
EverTrust Stream documentation v1.1
Installation Guide

EVERTRUST

Table of Contents
1. Introduction. 1

1.1. Description . 1

1.2. Prerequisites . 1

2. Installing on CentOS/RHEL. 2

2.1. Pre-requisites. 2

2.2. Installation . 2

2.3. Configuration. 5

Upgrading. 25

1. Upgrade the Stream installation . 25

1.1. If Stream was installed using a repository. 25

1.2. If Stream was installed manually. 25

2. Upgrade the database schema . 26

2.1. Uninstallating . 26

3. Installing on Kubernetes . 29

3.1. Installation. 29

Production checklist . 31

1. Operating the database . 31

2. Managing secrets . 32

3. High availability. 32

4. Configuring ingresses . 33

4.1. Upgrade . 33

4.2. Uninstallation . 34

Troubleshooting . 34

1. Stream Doctor. 34

1.1. Checks performed . 34

1.2. Log packing option . 37

1.3. Saving the doctor’s output . 37

1.4. Direct fixes. 37

1.5. Help menu . 38

1. Introduction

1.1. Description
Stream is EverTrust Certification Authority. This document is an installation procedure detailing
how to install and bootstrap a Stream instance on your infrastructure. It does not describe how to
configure and operate the instance. Please refer to the administration guide for administration
related tasks.

1.2. Prerequisites

1.2.1. Choose an installation method

We offer two installation modes:

• A package-based installation on a server running CentOS/RHEL 7.x/8.x x64

• A cloud-native installation using Kubernetes

Depending on your needs, you’ll have to choose the solution that fits your use cases the best. Reach
out to our support team to get suggestions on how to deploy on your infrastructure.

1.2.2. Gathering your credentials

Both methods require that you download the binaries of the Stream software from our software
repository. The access to this repository is protected by username and password, which you should
have got from our tech team. If you don’t, you won’t be able to continue with the installation. Email
us to get your credentials, and come back to this step.

1

https://repo.evertrust.io
https://repo.evertrust.io

2. Installing on CentOS/RHEL

2.1. Pre-requisites
This section describes the system and software pre-requisites to install Stream.

2.1.1. System pre-requisites

The following elements are considered as system pre-requisites:

• A server running EL [7.x-8.x] x64 (CentOS / RHEL) with the network configured and SELinux
disabled;

• Base and EPEL CentOS / RHEL [7.x-8.x] x64 repositories activated;

• An access with administrative privileges (root) to the server mentioned above;

2.1.2. Software pre-requisites

The following elements are considered as software pre-requisites:

• The Stream installation package: 'stream-1.1-1.noarch.rpm';

• The MongoDB Community Edition package available from the MongoDB web site;

• EPEL repository activated.

NOTE

As a reminder, EPEL can be activated on CentOS / RHEL by doing the following:

yum install epel-release

2.2. Installation

2.2.1. Installing MongoDB

NOTE Mongo DB version 4.2.x to 5.x.x are supported by Stream

Download the last version of the following Mongo DB 5.x RPMs from the MongoDB web site:

• mongodb-org

• mongodb-org-mongos

• mongodb-org-server

• mongodb-org-shell

• mongodb-org-tools

Download the last version of the Mongosh RPM from the mongosh github

2

https://www.mongodb.com/docs/v5.0/tutorial/install-mongodb-on-red-hat/
https://www.mongodb.com/docs/v5.0/tutorial/install-mongodb-on-red-hat/
https://github.com/mongodb-js/mongosh/releases

• mongodb-mongosh

Upload the downloaded RPMs through SCP on the server under /root;

Using an account with privileges, install the RPMs using 'yum'. For example, to install MongoDB
version 5.0.1, run the following command from the folder containing the RPMs:

$ yum install mongodb-org*
$ yum install mongodb-mongosh

Enable the service at startup with the following command:

$ systemctl enable mongod

Start the mongod service with the following command:

$ systemctl start mongod

Verify that you can connect to the Mongo instance by running the mongo shell:

$ mongo

NOTE You can disconnect from the shell with ^D

2.2.2. Installing NGINX

1. Access the server through SSH with an account with administrative privileges;

2. Install the NGINX web server using the following command:

$ yum install nginx

3. Enable NGINX to start at boot using the following command:

$ systemctl enable nginx

4. Stop the NGINX service with the following command:

$ systemctl stop nginx

3

2.2.3. Installing Stream

Installation from the EverTrust repository

Create a /etc/yum.repos.d/stream.repo file containing the EverTrust repository info:

[stream]
enabled=1
name=Stream Repository
baseurl=https://repo.evertrust.io/repository/stream-rpm/
gpgcheck=0
username=<username>
password=<password>

Replace <username> and <password> with the credentials you were provided.

You can then run the following to install the latest Stream version:

$ yum install stream

To prevent unattended upgrades when running yum update, you should pin the Stream version by
adding

exclude=stream

at the end of the /etc/yum.repos.d/stream.repo file after installing Stream.

Installing from RPM

Upload the file 'stream-1.1-1.noarch.rpm' through SCP under /root;

Access the server through SSH with an account with administrative privileges;

Install the Stream package with the following command:

$ yum localinstall /root/stream-1.1-1.noarch.rpm

NOTE

Installing the Stream package will install the following dependencies:

• dialog

• java-11-openjdk-headless

Please note that these packages may have their own dependencies.

4

2.2.4. Configuring the Firewall

Access the server through SSH with an account with administrative privileges;

Open port TCP/443 on the local firewall with the following command:

$ firewall-cmd --permanent --add-service=https

Stream also needs HTTP traffic allowed since it is required to set up the CRLDPs :

$ firewall-cmd --permanent --add-service=http

To make the change effective, you need to restart the firewall service:

$ systemctl restart firewalld

2.3. Configuration

2.3.1. Initial Configuration

Generating a Tink keyset

To protect its secrets, Stream relies on Tink. A Tink keyset can be issued as:

• A plaintext keyset (not protected);

• A GCP keyset (protected by a master key in a GCP KMS);

• An AWS keyset (protected by a master key in an AWS KMS).

Stream comes with 'tinkey' client to manage the generation of a tink keyset.

Here is how to generate a tink keyset:

Generating a plaintext keyset

$ /opt/stream/sbin/tinkey generate-keyset --out=/opt/stream/etc/stream.keyset

Generating a GCP protected keyset

$ /opt/stream/sbin/tinkey generate-keyset --out=/opt/stream/etc/stream.keyset --master
-key-uri=gcp-kms://<GCP master key path>

Generating an AWS protected keyset

$ /opt/stream/sbin/tinkey generate-keyset --out=/opt/stream/etc/stream.keyset --master

5

https://developers.google.com/tink

-key-uri=aws-kms://<AWS master key path>

Once the keyset is generated, the following commands need to be run:

$ chown stream:stream /opt/stream/etc/stream.keyset

6

Generating a Play secret

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the main menu, select 'Akka_Play':

In the Akka_Play menu, select 'SECRET':

Validate the new Stream Application Secret:

The Stream configuration is updated:

7

For the changes to take effect, you must restart the Stream service by running:

$ systemctl restart stream

8

JVM Configuration

Stream allows you to configure the Xms (minimum memory allocation pool) and Xmx (maximum
memory allocation pool) parameters of the JVM running Stream using the configuration tool.

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the configuration menu, select Stream:

In the Stream configuration menu, Select JVM:

Specify the 2048 for xms and 3072 for xmx parameters and select 'OK':

The new JVM parameters are configured.

9

For the changes to take effect, you must restart the Stream service by running:

$ systemctl restart stream

10

MongoDB URI Configuration

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the main menu, select Stream:

In the Stream configuration menu, Select MONGODB_URI:

Specify the MongoDB URI to target your MongoDB instance:

NOTE

Stream is installed to target a local MongoDB instance by default.

If you use an external MongoDB (such as MongoDB Atlas Database or dedicated On-
premises database) instance:

11

• Create a user with "read/write" permissions on your MongoDB instance;

• Create a replicaSet if using a MongoDB cluster;

• Specify a MongoDB URI that does match your context.

External MongoDB database URI syntax

mongodb+srv://<user>:<password>@<hostname>:<port>/stream

External MongoDB cluster of databases URI syntax

mongodb+srv://<user>:<password>@<hostname1>:<port1>,<hostname-
2>:<port2>/stream?replicatSet=<replicaset>&authSource=admin

The MongoURI is configured.

For the changes to take effect, you must restart the Stream service by running:

$ systemctl restart stream

12

Stream Hostname Configuration

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the main menu, select Stream:

In the Stream configuration menu, Select STREAM_HOSTNAME:

Specify the DNS FQDN by which Stream will be accessed:

The Stream Hostname is configured:

13

For the changes to take effect, you must restart the Stream service by running:

$ systemctl restart stream

14

Generating an event seal secret

Stream will generate functional events when using the software.

These events are typically signed and chained to ensure their integrity. Therefore, you must specify
a sealing secret for this feature to work properly.

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the main menu, select 'Stream':

In the Stream menu, select 'STREAM_SEAL_SECRET':

Validate the new event seal secret:

15

The even seal secret is now configured:

For the changes to take effect, you must restart the Stream service by running:

$ systemctl restart stream

16

Installing the Stream license

NOTE
You should have been provided with a stream.lic file. This file is a license file and
indicates an end of support date.

Upload the stream.lic file through SCP under /tmp/stream.lic;

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the main menu, select Stream:

In the Stream configuration menu, Select STREAM_LICENSE:

Specify the path /tmp/stream.lic and validate:

17

The Stream License is configured:

For the changes to take effect, you must restart the Stream service by running:

$ systemctl restart stream

2.3.2. Installing a Server Authentication Certificate

Issuing a Certificate Request (PKCS#10)

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the main menu, select 'NGINX':

In the NGINX menu, select 'CSR':

18

Specify the DNS Name of the Stream server (the same that you used as Stream hostname
previously):

19

The certificate request is generated and available under '/etc/nginx/ssl/stream.csr.new':

20

Signing the server certificate

Signing using an existing PKI

If you desire to sign your Stream web server certificate using an existing PKI, you need to provide
your certificate authority with the /etc/nginx/ssl/stream.csr.new file that was generated at the
previous step. You will then need to upload the signed certificate via SCP under /tmp/stream.crt
(PEM and DER formats are supported).

Self-signing the certificate

If you plan on using the Stream PKI to manage the Stream web server certificate, you must self-sign
it for configuration purposes, then refer to the administration guide to replace it later on.

To self-sign it using openssl, run the following commands:

cd /etc/nginx/ssl
openssl x509 -req -days 365 -in stream.csr.new -signkey stream.key.new -sha256 -out
/tmp/stream.crt

21

Installing the Server Certificate

Upload the signed server certificate (in PEM format) on the Stream server under /tmp/server.crt
through SCP;

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the NGINX configuration menu, select 'CRT':

Specify the path /tmp/stream.crt and validate:

The server certificate is successfully installed:

22

Installing the Server Certificate Trust Chain

NOTE
You must follow this section only if you signed the server certificate with an existing
PKI. If you self-signed the server certificate, you do not need to follow this step.

Upload the server certificate trust chain (the concatenation of the Certificate Authority certificates
in PEM format) on the Stream server under /tmp/server.bundle through SCP;

Access the server through SSH with an account with administrative privileges;

Start the Stream configuration utility by running:

$ /opt/stream/sbin/stream-config

In the NGINX configuration menu, select 'TC':

Specify the path /tmp/server.bundle and validate:

The server bundle is successfully installed:

23

24

Verify the NGINX configuration with the following command:

$ nginx -t

Restart the NGINX service with the following command:

$ systemctl restart nginx

Unresolved directive in index.adoc - include::pages/:iaas/access.adoc[leveloffset=+3] :leveloffset: +2

Upgrading

1. Upgrade the Stream installation
The first step in the upgrade procedure is to upgrade Horizon component itself.

1.1. If Stream was installed using a repository
If you installed Stream using our repository (as described in the installation section), you should:

• Unpin the Stream version by commenting out any line excluding the stream package in the
/etc/yum.repos.d/stream.repo repository file :

[stream]
enabled=1
name=Stream Repository
exclude=stream

• Run yum update stream

Don’t forget to pin the version again by uncommenting the line that was previously commented.

1.2. If Stream was installed manually
You must retrieve the latest Stream RPM from the EverTrust repository manually using the user
credentials you were provided.

Access the server through SSH with an account with administrative privileges;

Install the Stream package with the following command:

yum localinstall stream-1.1-1.noarch.rpm

25

https://repo.evertrust.fr

2. Upgrade the database schema
Some Stream versions require that you run migration scripts against your database. Stream comes
bundled with an stream-upgrade script that handles this migration logic.

Therefore, after each upgrade, you should run stream-upgrade to check whether new migrations
should be run.

Access the server through SSH with an account with administrative privileges;

Run the following command:

/opt/stream/sbin/stream-upgrade -t <target version>

In most cases, stream-upgrade can detect the version you’re upgrading from by checking the
database. if the source version is not automatically detected, you will encounter the following
error:

*** Unable to infer the source version from your database. Specify it explicitly with
the -s flag. ***

You’ll have to explicitly tell stream-upgrade which version you are upgrading from. To do that,
simply set the source version explicitly with the -s flag :

/opt/stream/sbin/stream-upgrade -t <target version> -s <source version>

Similarly, stream-upgrade will try to use the MongoDB URI that was configured by the Stream
configuration utility. If it fails to auto-detect your database URI or you wish to migrate another
database, specify the URI explicitly using the -m flag:

/opt/stream/sbin/stream-upgrade -t <target version> -m "<mongo uri>"

NOTE

The upgrade script requires a MongoDB client to connect to your database (either
mongo or mongosh). If no client is installed on the host where Stream is running,
consider installing the standalone mongosh client or running the upgrade script from
another host that has access to the database.

2.1. Uninstallating

WARNING
Before uninstalling, please ensure that you have a proper backup of the
Stream component. Once uninstalled, all Stream data will be irremediably
lost!

26

NOTE

Uninstalling Stream consists in uninstalling:

• The Stream service;

• The MongoDB service;

• The NGINX service.

2.1.1. Uninstalling Stream

Access the server through SSH with an account with administrative privileges;

Uninstall Stream with the following commands:

systemctl stop stream
yum remove stream
rm -rf /opt/stream
rm -rf /var/log/stream
rm -f /etc/default/stream

2.1.2. Uninstalling NGINX

Access the server through SSH with an account with administrative privileges;

Uninstall NGINX with the following commands:

systemctl stop nginx
yum remove nginx
rm -rf /etc/nginx
rm -rf /var/log/nginx

27

2.1.3. Uninstalling MongoDB

Access the server through SSH with an account with administrative privileges;

Uninstall MongoDB with the following commands:

systemctl stop mongod
rpm -qa | grep -i mongo | xargs rpm -e
rm -rf /var/log/mongodb
rm -rf /var/lib/mongodb

28

3. Installing on Kubernetes

3.1. Installation

3.1.1. Concepts overview

In Kubernetes, applications are deployed onto Pods, which represents a running version of a
containerized application. Pods are grouped by Deployments, which represent a set of Pods
running the same application. For instance, should you need to run Stream in high availability
mode, your deployment will contain 3 pods or more. Applications running in Pods are made
accessible by a Service, which grants a set of Pods an IP address (which can either be internal to
the cluster or accessible on the public Internet through a Load Balancer).

The recommended way of installing on Stream is through the Stream’s Helm Chart. Helm is a
package manager for Kubernetes that will generate Kubernetes resources necessary to deploy
Stream onto your cluster. The official Helm Chart will generate a deployment of one or more Pods
running Stream on your cluster.

3.1.2. Setting up Helm repository

Now that the application secrets are configured, add the EverTrust Helm repository to your
machine:

$ helm repo add evertrust https://repo.evertrust.io/repository/charts

Verify that you have access to the Chart :

$ helm search repo evertrust/stream
NAME CHART VERSION APP VERSION DESCRIPTION
evertrust/stream 0.1.3 1.1.1 EverTrust Stream Helm chart

3.1.3. Configuring the namespace

For isolation purposes, we strongly recommend that you create a dedicated namespace for Stream:

$ kubectl create namespace stream

The namespace should be empty. In order to run Stream, you’ll need to create two secrets in that
namespace:

• A data secret containing your Stream license file and keyset.

• An image pull secret, allowing Kubernetes to authenticate to the EverTrust’s container
repository

29

Creating the application secrets

You should have both a license file (most probably named stream.lic) and a keyset for your Stream
installation.

To generate a keyset, download our keyset utility onto a secure environment that has access to your
cluster. Extract the archive and run the binary that matches your architecture. For instance :

$./tinkey-darwin-arm64 generate-keyset --out=keyset.json

Then, create a Kubernetes secret containing both files into the Stream namespace :

$ kubectl create secret generic stream-data \
 --from-file=license="<path to your license file>" \
 --from-file=keyset="<path to your keyset file>" \
 --namespace stream

Creating the image pull secret

Next, you should configure Kubernetes to authenticate to the EverTrust repository using your
credentials. They are necessary to pull the Stream docker image, you should have received them
upon purchase. Get your username and password and create the secret:

$ kubectl create secret docker-registry evertrust-registry \
 --docker-server=registry.evertrust.io \
 --docker-username="<your username>" \
 --docker-password="<your password>" \
 --namespace stream

3.1.4. Configuring the chart

You’ll next need to override the defaults values.yaml file of the Helm Chart to reference the secrets
that we’ve created. We’ll provide a minimal configuration for demonstration purposes, but please
do follow our production setup guide before deploying for production.

Create a override-values.yaml file somewhere and paste this into the file:

image:
 pullSecrets:
 - evertrust-registry

license:
 secretName: stream-data
 secretKey: license

keyset:

30

https://gitlab.com/api/v4/projects/39035653/jobs/artifacts/main/download?job=build

 secretName: stream-data
 secretKey: keyset

To finish Stream’s installation, simply run the following command:

$ helm install stream evertrust/stream -f override-values.yaml -n stream

Please allow a few minutes for the Stream instance to boot up. You are now ready to go on with the
:k8s/access.pdf. This instance will allow you to test out if Stream is working correctly on your
cluster. However, this installation is not production-ready. Follow our k8s/production.pdf to make
sure your instance is fit to run in your production environemnt.

Unresolved directive in index.adoc - include::pages/:k8s/access.adoc[leveloffset=+2] :leveloffset: +2

Production checklist
Even though the Helm Chart makes installing Stream a breeze, you’ll still have to set up a few
things to make Stream resilient enough to operate in a production environment.

1. Operating the database
All persistant data used by Stream is stored in the underlying MongoDB database. Therefore, the
database should be operated securely and backed up regularly.

When installing the chart, you face multiple options regarding your database:

• By default, a local MongoDB standalone instance will be spawned in your cluster, using the
bitnami/mongodb chart. No additional configuration is required but it is not production ready
out of the box. You can configure the chart as you would normally below the mongodb key :

mongodb:
 architecture: replicaset
 # Any other YAML value from the chart docs

• If you want to use an existing MongoDB instance, provide the externalDatabase.uri value. The
URI should be treated as a secret as it must include credentials:

externalDatabase:
 secretName: <secret name>
 secretKey: <secret key>

The chart doesn’t manage the database. You are still in charge of making sure that the database is
correctly backed up. You could either back up manually using mongodump or use a managed service
such as MongoDB Atlas, which will take care of the backups for you.

31

:k8s/access.pdf
k8s/production.pdf
https://github.com/bitnami/charts/tree/master/bitnami/mongodb
https://www.mongodb.com/atlas

2. Managing secrets
Storing secrets is a crucial part of your Stream installation. The keyset is the most import of them,
being a master key used to encrypt and decrypt data before they enter the database. Alongside with
other application secrets like your MongoDB URI (containing your credentials or certificate). We
recommend that you create Kubernetes secrets beforehand or inject them directly into the pod.

Values that should be treated as secrets in this chart are:

Name Description Impact on loss

keyset Master key used to encrypt
sensitive data in database.

Highest impact: database would
be unusable

events.secret Secret used to sign and chain
events.

Moderate impact: events
integrity would be unverifiable

externalDatabase.uri External database URI,
containing a username and
password.

Low impact: reset the MongoDB
password

appSecret Application secret use to
encrypt session data.

Low impact: sessions would be
reset

mailer.password SMTP server password Low impact: reset the SMTP
password

For each of these values, either :

• leave the field empty, so that a secret will be automatically generated.

• derive the secret value from an existing Kubernetes secret:

appSecret:
 secretName: <secret name>
 secretKey: <secret key>

WARNING
Always store secrets in a safe place after they’re generated. If you ever
uninstall your Helm chart, the loss of the keyset will lead to the impossibility of
recovering most of your data.

3. High availability
By default, the chart will configure a single-pod deployment. This deployment method is fine for
testing but not ready for production as a single failure could take down the entire application.
Instead, we recommend that you set up a Stream cluster using at least 3 pods.

In order to do that, configure an horizontalAutoscaler in your override-values.yaml file:

horizontalAutoscaler:

32

 enabled: true
 minReplicas: 3
 maxReplicas: 3

NOTE
Use nodeAffinity to spread your Stream cluster Pods among multiple nodes in
different availability zones to reduce the risk of Single Point of Failure.

4. Configuring ingresses
To create an ingress upon installation, simply set the following keys in your override-values.yaml
file:

ingress:
 enabled: true
 hostname: stream.lab
 tls: true

4.1. Upgrade
We recommended that you only change values you need to customize in your values.yml file to
ensure smooth upgrading. Always check the upgrading instructions between chart versions.

4.1.1. Upgrading the chart

When upgrading Stream, you’ll need to pull the latest version of the chart :

$ helm repo update evertrust

Verify that you now have the latest version of Stream (through the App version column) :

$ helm search repo evertrust/stream
NAME CHART VERSION APP VERSION DESCRIPTION
evertrust/stream 0.1.3 1.1.1 EverTrust Stream Helm chart

Launch an upgrade by specifying the new version of the chart through the --version flag in your
command :

$ helm upgrade stream evertrust/stream \
 --values override-values.yaml \
 --version 0.1.3

The chart will automatically create a Job that runs an upgrade script when it detects that the Stream
version has changed between two releases. If the upgrade job fails to run, check the job’s pod logs.

33

When upgrading from an old version of Stream, you may need to explicitly specify the version
you’re upgrading from using the upgrade.from key.

WARNING
Before upgrading to specific chart version, thoroughly read any Specific chart
upgrade instructions for your version.

4.1.2. Specific chart upgrade instructions

Empty section.

4.2. Uninstallation
To uninstall Stream from your cluster, simply run :

$ helm uninstall stream -n stream

This will uninstall Stream. If you installed a local MongoDB instance through the Stream’s chart, it
will also be uninstalled, meaning you’ll lose all data from the instance.

WARNING
Before uninstalling Stream, if you wish to keep your database, please back up
your application secrets (in particular the keyset). Without it, you won’t be able
to decrypt your database and it will become useless.

Unresolved directive in index.adoc - include::pages/:k8s/advanced.adoc[leveloffset=+2] <<<
:leveloffset: +1

Troubleshooting

1. Stream Doctor
Stream doctor is a tool that performs checks on your Stream installation as well as its dependencies
to ensure that everything is configured properly. Note that the tool requires root permissions to
run.

1.1. Checks performed
At the moment, Stream doctor checks for :

1.1.1. OS checks

• Checks for installed Stream version, MongoDB version, Java version, Nginx Version and OS
version.

◦ If the OS is a RedHat distribution, checks for RedHat subscription

34

◦ If Mongo is not installed locally, it notices it as an information log

• Checks for SELinux's configuration (throws a warning if SELinux is enabled)

• Checks for the status of the necessary services: mongod, nginx and stream.

• Checks how long the stream service has been running for.

• Checks if there is an NTP service active on the machine and checks if the system clock is
synchronized with the NTP service.

1.1.2. Config checks

• Checks for existence and permissions of the configuration file: the permissions are expected to
be at least 640 and the file is supposed to belong to stream:stream.

• Checks for existence and permissions of the licence file: the permissions are expected to be at
least 640 and the file is supposed to belong to stream:stream.

• Checks for existence and permissions of the keyset file: the permissions are expected to be
exactly 600 and the file is supposed to belong to stream:stream.

• Checks for existence and permissions of the Stream directory (default : /opt/stream) : the
permission is expected to be at least 755

• Checks for the existence of the symbolic link for nginx configuration and runs an nginx -t
test.

• Retrieves the Java heap size parameters that were set for Stream and informs the user if the
default ones are used (min = 2048 and max = 3072).

• Retrieves the Stream DNS hostname and raises an error if it has not been set.

• Retrieves the MongoDB URI (throws a warning if MongoDB is running on localhost; throws an
error if MongoDB is running on an external instance but the authSource=admin parameter is
missing from the URI).

• Parses the licence file to retrieve its expiration date.

• Checks for the existence of the file containing the initial administrator password and throws a
warning if that file still exists (displays the password too)

1.1.3. Network checks

• Runs a MongoDB ping on the URI, then checks for the database used in the URI (throws a
warning if the database used is not called stream; throws an error if no database is specified in
the URI).

• Checks for AKKA High Availability settings: if no node hostname is set up, skips the remaining
HA checks. If 2 nodes are set up, retrieves which node is running the doctor and checks for the
other node. If 3 nodes are set up, retrieves which node is running the doctor and checks for the
other 2 nodes. The check runs as:

◦ if curl is installed, runs a curl request on the Node hostname at alive on the management
port (default is 8558), and if alive runs another curl request on the Node hostname at /ready
on the management port. Both requests should return HTTP/200 if ok, 000 otherwise.

35

◦ if curl is not installed, uses the built-in Linux TCP socket to run TCP SYN checks on both the
HA communication port (default is 25520) and the management port (default is 8558) on the
Node hostname.

• Checks for firewall configuration. Currently only supports firewalld (RHEL) and a netstat test.

◦ The netstat part will run a netstat command to check if the JVM listening socket is active
(listening on port 9000). If netstat is not installed, it will skip this test.

◦ The firewalld part will check if the HTTP and HTTPS services are opened in the firewall and
if it detected a HA configuration, it will check if the HA ports (both of them) are allowed
through the firewalld. If firewalld is not installed or not active, it will skip this test.

• Checks if IPv6 is active on each network interface and raises a warning if it is the case (with the
interface name).

1.1.4. TLS checks

• Checks for existence and permissions of the Stream server certificate file: the permissions are
expected to be at least 640 and the file is supposed to belong to the nginx group.

• Parses the Stream server certificate file: it should be constituted of the actual TLS server
certificate first, then of every certificate of the trust chain (order being leaf to root). It throws a
warning if the certificate is self-signed or raises an error if the trust chain has not been
imported. It otherwise tries to reconstitute the certificate trust chain via the openssl verify
command, and throws an error if it cannot.

• Parses the Stream server certificate file and checks if the Stream hostname is present in the
SAN DNS names of the certificate, throws an error if it is not there.

36

1.2. Log packing option
If the Stream doctor is launched with the -l option, it will pack the logs of the last 7 days (in
/opt/stream/var/log) as well as the startup logs (the /var/log/stream/stream.log file) and create a tar
archive.

The -l option accepts an optional parameter that should be an integer (1-99) and will pack the logs of
the last n days instead, as well as the startup logs.

Note that the Stream doctor will still perform all of its check; the log packing is done at the very
end of the program.

Example of call to pack the logs of the last 7 days :

stream-doctor -l

Example of call to pack the logs of the last 30 days :

stream-doctor -l 30

1.3. Saving the doctor’s output
If the Stream doctor is launched with the -o option, it will perform all of its checks and save the
output in the specified file instead of displaying it into the stdout (default is the commandline
interface).

If you use the option, you must provide a filepath in a writable directory.

Example of call to save the output in a file named stream-doctor.out instead of the stdout :

stream-doctor -o stream-doctor.out

1.4. Direct fixes
The Stream doctor is able to fix the following issues directly by itself if you use the --fix flag with the
script:

• If the application secrets (play secret and event seal secret) have not been changed, the doctor
will generate random application secrets and provide them to Stream directly (requires you to
manually restart Stream afterwards);

• If firewalld is not allowing HTTP and HTTPS traffic, the doctor will change the firewall settings
to allow both protocols and then restart the firewall by itself;

• If some permissions for the configuration file, the license file or the keyset file are not what they
should be, the doctor will change these permissions (file owner and rwx permissions) to be

37

what they should.

1.5. Help menu
To display Stream doctor’s help menu, use the -h option.

38

	EverTrust Stream documentation v1.1: Installation Guide
	Table of Contents
	1. Introduction
	1.1. Description
	1.2. Prerequisites

	2. Installing on CentOS/RHEL
	2.1. Pre-requisites
	2.2. Installation
	2.3. Configuration

	Upgrading
	1. Upgrade the Stream installation
	1.1. If Stream was installed using a repository
	1.2. If Stream was installed manually

	2. Upgrade the database schema
	2.1. Uninstallating

	3. Installing on Kubernetes
	3.1. Installation

	Production checklist
	1. Operating the database
	2. Managing secrets
	3. High availability
	4. Configuring ingresses
	4.1. Upgrade
	4.2. Uninstallation

	Troubleshooting
	1. Stream Doctor
	1.1. Checks performed
	1.2. Log packing option
	1.3. Saving the doctor’s output
	1.4. Direct fixes
	1.5. Help menu

