
EverTrust Horizon documentation
v2.7

Installation Guide

EVERTRUST

Table of Contents
1. Introduction. 1

1.1. Description . 1

1.2. Prerequisites . 1

2. Installing on CentOS/RHEL. 2

2.1. Pre-requisites. 2

2.2. Installation . 2

2.3. Configuration. 5

2.4. Startup & login . 35

2.5. Upgrade. 36

2.6. Additional configuration. 38

2.7. Backup and Restore . 39

2.8. Uninstallation . 41

3. Installing on Kubernetes . 43

3.1. Installation . 43

3.2. Production checklist . 45

3.3. Startup & login . 50

3.4. Upgrade. 51

3.5. Uninstallation . 53

3.6. Advanced usage . 54

4. Installing on Openshift . 58

4.1. Security contexts. 58

4.2. Leases . 58

4.3. Router configuration . 59

5. Running with Docker/Compose . 62

5.1. Docker Compose example . 62

5.2. Vanilla Docker example . 63

5.3. Environment variables . 63

5.4. Injecting extra configuration. 67

5.5. Custom startup scripts. 68

6. Analytics . 69

6.1. Configuring the analytics . 69

7. Monitoring . 70

7.1. Healthchecks . 70

7.2. Metrics. 70

8. Troubleshooting . 72

8.1. Horizon Doctor . 72

8.2. Additional checks . 75

9. Available technical configuration parameters . 76

9.1. ACME Configuration . 77

9.2. ACME Pki connector configuration . 79

9.3. Analytics Configuration . 80

9.4. Bootstrap Configuration . 82

9.5. CA Configuration. 83

9.6. CSV Configuration. 84

9.7. Certificate authentication. 85

9.8. Database Configuration. 85

9.9. Discovery Event Configuration . 86

9.10. Event Configuration. 86

9.11. General . 87

9.12. Global constraints Configuration . 93

9.13. Grading Configuration . 94

9.14. HTTP Headers Configuration. 94

9.15. Metrics Configuration . 95

9.16. Nonce Configuration . 96

9.17. OpenID Configuration . 97

9.18. Search Configuration. 97

9.19. Trigger Configuration . 100

9.20. Vault Configuration . 101

1. Introduction

1.1. Description
Horizon is EverTrust Certificate lifecycle management solution. This document is an installation
procedure detailing how to install and bootstrap Horizon server on your infrastructure. It does not
describe how to configure and operate a Horizon instance. Please refer to the administration guide
for administration related tasks.

1.2. Prerequisites

1.2.1. Choose an installation method

We offer two installation modes:

• Enterprise Linux 8.x/9.x x64

• A cloud-native installation using Kubernetes

Depending on your needs, you’ll have to choose the solution that fits your use cases the best. Reach
out to our support team to get suggestions on how to deploy on your infrastructure.

1.2.2. Gathering your credentials

Both methods require that you download the binaries of the Horizon software from our software
repository. The access to this repository is protected by username and password, which you should
have got from our tech team. If you don’t, you won’t be able to continue with the installation. Email
us to get your credentials, and come back to this step.

1

https://repo.evertrust.io
https://repo.evertrust.io

2. Installing on CentOS/RHEL

2.1. Pre-requisites
This section describes the system and software pre-requisites to install Horizon.

2.1.1. System pre-requisites

The following elements are considered as system pre-requisites:

• A server running EL [8.x-9.x] x64 (CentOS / RHEL) with the network configured and SELinux as
well as FIPS mode disabled;

• Base and EPEL CentOS / RHEL [8.x-9.x] x64 repositories activated;

• An access with administrative privileges (root) to the server mentioned above;

• The IP address / DNS Name of an SMTP relay;

• The email address of the Horizon server administrator.

2.1.2. Software pre-requisites

The following elements are considered as software pre-requisites:

• The Horizon installation package: horizon-2.7.X-1.noarch.rpm;

• The MongoDB Community Edition package available from the MongoDB web site;

• EPEL repository activated.

NOTE

As a reminder, EPEL can be activated on CentOS / RHEL by doing the following:

$ yum install epel-release

2.2. Installation

2.2.1. Install MongoDB

NOTE Mongo DB version 5.0 to 7.0 are supported by Horizon

Download the latest version of the following Mongo DB 5.x RPMs from the MongoDB web site:

• mongodb-org

• mongodb-org-mongos

• mongodb-org-server

• mongodb-org-shell

2

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/
https://www.mongodb.com/docs/v5.0/tutorial/install-mongodb-on-red-hat/

• mongodb-org-tools

Download the latest version of the Mongosh RPM from the mongosh github.

• mongodb-mongosh

Upload the downloaded RPMs through SCP on the server under /root.

Using an account with privileges, install the RPMs using 'yum'. For example, to install MongoDB
version 5.0.1, run the following command from the folder containing the RPMs:

$ yum install mongodb-org*
$ yum install mongodb-mongosh

Enable the service at startup with the following command:

$ systemctl enable mongod

Start the mongod service with the following command:

$ systemctl start mongod

Verify that you can connect to the Mongo instance by running the mongo shell:

$ mongo

NOTE You can disconnect from the shell with ^D

2.2.2. Install NGINX

1. Access the server through SSH with an account with administrative privileges;

2. Install the NGINX web server using the following command:

$ yum install nginx

3. Enable NGINX to start at boot using the following command:

$ systemctl enable nginx

4. Stop the NGINX service with the following command:

3

https://github.com/mongodb-js/mongosh/releases

$ systemctl stop nginx

2.2.3. Install Horizon

Installation from the EverTrust repository

Create a /etc/yum.repos.d/horizon.repo file containing the EverTrust repository info:

[horizon]
enabled=1
name=Horizon Repository
baseurl=https://repo.evertrust.io/repository/horizon-rpm/
gpgcheck=0
username=<username>
password=<password>

Replace <username> and <password> with the credentials you were provided.

You can then run the following to install the latest Horizon version:

$ yum install horizon

To prevent unattended upgrades when running yum update, you should pin the Horizon version by
adding

exclude=horizon

at the end of the /etc/yum.repos.d/horizon.repo file after installing Horizon.

After installing, services must be reloaded to take the change into account

$ systemctl daemon-reload

Installing from RPM

Upload the file horizon-2.7.X-1.noarch.rpm through SCP under /root.

Access the server through SSH with an account with administrative privileges;

Install the Horizon package with the following command:

$ yum localinstall /root/horizon-2.7.X-1.noarch.rpm

4

NOTE

Installing the Horizon package will install the following dependencies:

• dialog

• java-17-openjdk-headless

Please note that these packages may have their own dependencies.

After installing, services must be reloaded to take the change into account

$ systemctl daemon-reload

2.2.4. Configure the Firewall

Access the server through SSH with an account with administrative privileges;

Open port TCP/443 on the local firewall with the following command:

$ firewall-cmd --permanent --add-service=https

Reload the firewall configuration with:

$ systemctl restart firewalld

2.3. Configuration

2.3.1. Initial Configuration

Configuring the SMTP Relay

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select 'SMTP':

5

Specify IP address or the DNS name of the SMTP relay and validate:

6

The Postfix configuration is updated:

Exit the configuration utility and restart the Postfix service with the following command:

$ systemctl restart postfix

Configuring the Horizon Administrator’s Email Address

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select Administrator:

7

Specify the email address of the Horizon Administrator and validate:

8

Exit the Configuration Utility;

Validate the SMTP relay and Administrator Email Address with the following commands:

$ yum install mailx
$ mail -s "Hello Horizon root"
 > Hello From Horizon
 .

Ensure that the email receives the test email.

Generating a new Horizon Application Secret

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$/opt/horizon/sbin/horizon-config

In the main menu, select 'Pekko_Play':

In the Pekko_Play menu, select 'SECRET':

9

Validate the new Horizon Application Secret:

The Horizon configuration is updated:

10

JVM Configuration

Horizon allows you to configure the xms (minimum memory allocation pool) and xmx (maximum
memory allocation pool) parameters of the JVM running Horizon using the configuration tool.

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the configuration menu, select 'Horizon':

In the Horizon configuration menu, Select 'JVM':

11

Specify the 2048 for xms and 3072 for xmx parameters and select 'OK':

The new JVM parameters are configured:

12

MongoDB URI Configuration

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select Horizon:

In the Horizon configuration menu, Select MONGODB_URI:

Specify the MongoDB URI to target your MongoDB instance:

13

NOTE

Horizon is installed to target a local MongoDB instance by default.

If you use an external MongoDB (such as MongoDB Atlas Database or dedicated On-
premises database) instance:

• Create a user with "read/write" permissions on your MongoDB instance;

• Create a replicaSet if using a MongoDB cluster;

• Specify a MongoDB URI that does match your context.

External MongoDB database URI syntax: mongodb+srv://<user>:<password>@<Mongo-
DB-hostname>:<Mongo-DB-Port>/horizon

External MongoDB cluster of databases URI syntax:
mongodb+srv://<user>:<password>@<Mongo-DB-hostname-1>,<Mongo-DB-hostname-
2>:<Mongo-DB-Port>/horizon?replicaSet=<Horizon-ReplicaSet-Name>&authSource=admin

The MongoURI is configured:

14

Horizon Hostname Configuration

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select 'Horizon':

In the Horizon configuration menu, select HORIZON_HOSTNAME:

Specify the DNS FQDN by which Horizon will be accessed:

15

The Horizon Hostname is configured:

16

Generating an event seal secret

Horizon will generate functional events when using the software.

These events are typically signed and chained to ensure their integrity. Therefore, you must specify
a sealing secret for this feature to work correctly.

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select 'Horizon':

In the Horizon menu, select 'HORIZON_SEAL_SECRET':

Validate the new event seal secret:

17

The event seal secret is now configured:

18

Installing the Horizon license

NOTE

You should have been provided with a 'horizon.lic' file. This file is a license file and
indicates:

• The horizon entitled module(s)

• The limitation in terms of holder per module if any

• A end of support date

Upload the horizon.lic file through SCP under /tmp/horizon.lic;

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select 'Horizon':

In the Horizon configuration menu, Select 'HORIZON_LICENSE':

19

Specify the path /tmp/horizon.lic and validate:

The information of the license should be prompted. If everything is good, import the license:

20

The Horizon License is configured:

Restart the horizon service using the following command:

$ systemctl restart horizon

21

Horizon Vault Key configuration

NOTE

Horizon stored sensitive data in a secure way using encryption.

Horizon masterkey can be derived from:

• Software key;

• HSM stored key using (PKCS#11 compatible HSMs are supported);

• Azure Key Vault stored key;

• Hashicorp vault stored key;

• FCMS vault stored key.

Please refer to the proper section according to your setup.

Horizon SSV key Configuration (Software)

WARNING This section must not be followed if you use another vault than the default one.

Access the server through SSH with an account with administrative privileges;

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select 'Horizon':

In the Horizon configuration menu, Select 'HORIZON_SSV_KEY':

22

Specify the master key that will be used:

Horizon masterkey is configured:

23

Restart the horizon service using the following command:

$ systemctl restart horizon

24

HSM vault Configuration

Horizon supports PKCS#11 compatible HSM vaults.

WARNING This section must not be followed if you use another vault than the HSM vault.

NOTE

HSM middleware should be properly installed and HSM slot initialization should be
done using the tools provided by the HSM provider. "horizon" linux user should be
member of the proper HSM linux management group to perform cryptographic
operations ('nfast' for nCipher nShield HSM or 'hsmusers' for Luna HSM for
example).

Access the server through SSH with an account with administrative privileges;

Create a vaults.conf configuration file in /opt/horizon/etc/conf.d directory with the following
content to configure the HSM vault:

default {
 module_path = ""
 slot_id = ""
 pin = ""
 label = ""
 allow_master_key_gen = true
}

• module_path: The path to the PKCS#11 library (string between double quotes);

• slot_id: ID of the Slot on the PKCS#11 Module (string between double quotes);

• pin: The PIN used to authenticate to your HSM slot (string between double quotes);

• label: Label of key (string between double quotes);

• allow_master_key_gen: Allow the masterkey to be generated by Horizon if not found in the slot.

Set the permissions using the following commands:

$ chown horizon:horizon /opt/horizon/etc/conf.d/vaults.conf

Restart the horizon service using the following command:

$ systemctl restart horizon

WARNING

At the end of the installation procedure:

• Set allow_master_key_gen value to false.

• Restart the horizon service.

25

Installing Horizon on a cluster of servers

WARNING

This section must not be followed if you plan on deploying Horizon in
standalone mode (vs cluster mode). WARNING: This section does not explain
how to install Horizon on a Kubernetes cluster. Please refer to the dedicated
section.

In the main menu, select 'Pekko_Play':

In the Pekko_Play menu, select 'PEKKO_HA':

In this menu, specify either the IP address or the DNS name for each server that will be running
Horizon on this cluster, as well as the local node index (the number of the node that you are
configuring at that moment). You must also specify where the port Artery is hosted, usually it
should be on the same node with a different port.

NOTE Note that the local node index must match the Node Hostname parameter:

26

Save your changes from the menu.

The High Availability mode is now configured on the current node:

You must now configure your other nodes, but because they belong to the same cluster they need to
share the same secret, the same secret seal event, the same hostname and the same database.
In order to be able to do that, you need to copy the configuration file that was generated by the
horizon-config app, named /etc/default/horizon and paste it on each one of your nodes;

Then on each other node, run the Horizon Configuration utility with the following command:

$ /opt/horizon/sbin/horizon-config

27

In the Pekko_Play menu, select 'PEKKO_HA':

Here, you need to change the local node index to match the hostname of the node that you are
configuring:

28

WARNING
You will need to import the Horizon license file on each node manually,
following the guidelines of section Installing the Horizon license.

Additionally, on each node, you will need to open the ports used for Pekko_HA and Pekko_MGMT,
which are by default 17355 and 7626:

$ firewall-cmd --permanent --add-port=17355/tcp
$ firewall-cmd --permanent --add-port=7626/tcp

Reload the firewall configuration with:

$ systemctl restart firewalld

Restart the Horizon service on each one of the nodes:

$ systemctl restart horizon

Enabling the lease

To allow for High Availability even when a minority of nodes are up, the following configuration
should be added.

pekko.cluster.split-brain-resolver {
 active-strategy = "lease-majority"
 lease-majority {
 lease-implementation = "lease.mongo"
 }
}

29

2.3.2. Server Authentication Certificate

Issuing a Certificate Request (PKCS#10)

Access the server through SSH with an account with administrative privileges.

Run the Horizon Configuration Utility with the following command:

$ /opt/horizon/sbin/horizon-config

In the main menu, select 'NGINX':

In the NGINX menu, select 'CSR':

30

Specify the DNS Name of the Horizon server (by default, the config script takes the Horizon
hostname if defined or the local machine hostname otherwise):

The certificate request is generated and available under /etc/nginx/ssl/horizon.csr.new:

Sign the certificate request using your PKI.

31

Installing a Server Certificate

Upload the generated server certificate on the Horizon server under /tmp/horizon.pem through SCP;

In the NGINX configuration menu, select 'CRT':

Specify the path /tmp/horizon.pem and validate:

32

The server certificate is successfully installed:

33

Installing the Server Certificate Trust Chain

Upload the server certificate trust chain (the concatenation of the Certificate Authority certificates
in PEM format) on the Horizon server under /tmp/server.bundle through SCP;

In the NGINX configuration menu, select 'TC':

Specify the path /tmp/server.bundle and validate:

34

The server bundle is successfully installed:

Verify the NGINX configuration with the following command:

$ nginx -t

Restart the NGINX service with the following command:

$ systemctl restart nginx

2.4. Startup & login

2.4.1. Starting the Horizon services

1. Access the server through SSH with an account with administrative privileges;

2. Start the horizon service with the following command:

$ systemctl start horizon

3. Start the nginx service with the following command:

$ systemctl start nginx

2.4.2. Accessing the web UI

1. Launch a web browser;

2. Browse to https://[Horizon IP or FQDN]:

35

NOTE
Upon first boot, a random administrator password will be generated. To retrieve
it, open the /opt/horizon/var/run/adminPassword file. The default administration
login is administrator.

3. Specify the default administration credentials and hit the 'Login' button:

CAUTION
It is highly recommended to create a dedicated administration account and
delete the default one, or at least modify the default administrator
password.

2.5. Upgrade

2.5.1. Standard Upgrade

NOTE
The current instructions refer to the standard upgrade procedure. Additional steps
might be required, please refer to release notes.

36

Upgrade the horizon installation

You must retrieve the latest Horizon RPM from the EverTrust repository manually using the user
credentials you were provided.

Access the server through SSH with an account with administrative privileges.

Install the Horizon package with the following command:

$ yum install horizon-2.7.X-1.noarch.rpm

After installing, services must be reloaded to take the change into account

$ systemctl daemon-reload

Upgrade the database schema

Some Horizon versions require that you run migration scripts against your database. Since version
2.1.0, Horizon comes bundled with an horizon-upgrade script that handles this migration logic.

Therefore, after each upgrade, you should run horizon-upgrade to check whether new migrations
should be run.

Access the server through SSH with an account with administrative privileges.

Run the following command:

$ /opt/horizon/sbin/horizon-upgrade -t <target version>

In most cases, horizon-upgrade can detect the version you’re upgrading from by checking the
database. However, when upgrading from version prior to 2.1.0, you will encounter the following
error:

*** Unable to infer the source version from your database. Specify it explicitly with
the -s flag. ***

You’ll have to explicitly tell horizon-upgrade which version you are upgrading from. To do that,
simply set the source version explicitly with the -s flag:

$ /opt/horizon/sbin/horizon-upgrade -t <target version> -s <source version>

Similarly, horizon-upgrade will try to use the MongoDB URI that was configured by the Horizon
configuration utility. If it fails to auto-detect your database URI or you wish to migrate another
database, specify the URI explicitly using the -m flag:

37

https://repo.evertrust.io

$ /opt/horizon/sbin/horizon-upgrade -t <target version> -m "<mongo uri>"

NOTE

The upgrade script requires a MongoDB client to connect to your database (either
mongo or mongosh). If no client is installed on the host where Horizon is running,
consider installing the standalone mongosh client or running the upgrade script from
another host that has access to the database.

2.5.2. Upgrading from a version prior to 2.1.0

These instructions are specific to the 2.1.0 version, and should be followed if you upgrade from a
version prior to 2.1.0 to any version greater or equal to 2.1.0.

These steps should be followed in addition to the common upgrade procedure found in the
standard upgrade protocol. None of these steps are automated by horizon-upgrade.

Setting an event seal secret

You must manually create an entry to pass an event seal secret to Horizon in the
/etc/default/horizon file. horizon-config won’t do that automatically.

To do so, open the /etc/default/horizon file with a text editor:

$ vi /etc/default/horizon

And add a new line under the Horizon variables section:

Horizon variables
HORIZON_NOTIFICATION_SMTP_HOST=127.0.0.1
HORIZON_HOSTNAME=
HORIZON_DEFAULT_SSV_KEY=
HORIZON_EVENT_SEAL_SECRET=changeme # <- this one

Then, near the end of the file, after the # Setting Horizon Mongo DB uri section, create a new section
for the event seal secret:

Setting the Horizon event seal secret
JAVA_OPTS="$JAVA_OPTS -Dhorizon.event.seal.secret=${HORIZON_EVENT_SEAL_SECRET}"

Horizon won’t boot if the HORIZON_EVENT_SEAL_SECRET is set to changeme. Therefore, you should set
your secret to something hard to guess. Refer to the Initial Configuration guide to learn how to
generate a seal secret with horizon-config.

2.6. Additional configuration
Some technical configurations can be applied to an instance directly in its configuration file.

38

To add a configuration parameter:

1. Access the EVERTRUST Horizon server through SSH using an account with administrative
privileges;

2. With an editor like vi, open the /opt/horizon/etc/conf.d/horizon-extra.conf file;

3. For each parameter you wish to override, create a newline and use the following syntax:

<parameter>=<value>

As an example, if you want to modify the file extension that DER certificates will have when sent as
email attachments and set it to CRT, you need to add:

horizon.notification.mail.attachment.extension.der="crt"

4. Save your modifications and restart the Horizon service:

$ systemctl restart horizon

NOTE
One added line means one modified option, you need to add as many lines at the
end of the file as there are values that you want to override.

NOTE The available configurations are listed here.

2.7. Backup and Restore
This section details how to back-up and restore Horizon. Back-up and restore operation can be
performed using the back-up and restore tool available under /opt/horizon/sbin/horizon-backup. It
is designed to be used only in RPM-Based deployments.

For Docker or Kubernetes based deployments, the configuration should be managed by the
Docker/Kubernetes management platform, and the database should be backed-up using MongoDB
tools.

2.7.1. Backup Procedure

This section details how to back up Horizon configuration elements.

Several elements can be backed up:

• The Horizon configuration files.

• The Horizon MongoDB.

The backup tool allows backing up these elements independently.

39

reference_config.pdf

$ /opt/horizon/sbin/horizon-backup --help
 usage: horizon-backup [-cdho:qs]
 -c | --conf Backup the configuration files
 -d | --db Backup the MongoDB database
 -h | --help Display the 'horizon-backup' help
 -o | --output [path] Specify the backup output folder (default:
'/opt/horizon/var/backup')
 -q | --quiet Quiet mode

To back up the configuration files, run the following command:

$ /opt/horizon/sbin/horizon-backup -c

The configuration files backup consists of a compressed archive (.tar.gz) located under
/opt/horizon/var/backup/.

To back up the MongoDB database, run the following command:

$ /opt/horizon/sbin/horizon-backup -d

The MongoDB database backup consists of a compress file (.gz) located under
/opt/horizon/var/backup/.

To run a complete backup, execute the following command:

$ /opt/horizon/sbin/horizon-backup -c -d

NOTE

• The backup output folder can be overridden using the -o | --output parameter

• The backup tool can operate in quiet mode (when scheduled in a cron job) using
the -q | --quiet parameter

40

2.7.2. Restoration Procedure

This section details how to restore horizon configuration elements.

WARNING
This restore procedure only applies to the exact same application version as
the backup file.

Restoration operation should be performed while the Horizon service is not running. Stop the
Horizon service with the following command:

$ systemctl stop horizon

To restore a configuration backup, run the following command:

$ tar xzpvf [horizon configuration backup archive path] -C/

To restore the MongoDB database, run the following command:

$ mongorestore --uri="[MongoDB URI]" --drop --gzip --archive=[horizon MongoDB backup
archive path]

NOTE
The MongoDB URI can be retrieved from the /etc/default/horizon/_* configuration
file, as MONGODB_URI parameter.

The Horizon service can now be started with the following command:

$ systemctl start horizon

2.8. Uninstallation

WARNING
Before uninstalling, please make sure that you have a proper backup of the
Horizon component. Once uninstalled, all the Horizon data will be
irremediably lost!

NOTE

Uninstalling Horizon consists in uninstalling:

• The Horizon service;

• The MongoDB service;

• The NGINX service.

41

2.8.1. Uninstalling Horizon

Access the server through SSH with an account with administrative privileges.

Uninstall Horizon with the following commands:

 $ systemctl stop horizon
 $ yum remove horizon
 $ rm -rf /opt/horizon
 $ rm -rf /var/log/horizon
 $ rm -f /etc/default/horizon

2.8.2. Uninstalling NGINX

Access the server through SSH with an account with administrative privileges.

Uninstall NGINX with the following commands:

 $ systemctl stop nginx
 $ yum remove nginx
 $ rm -rf /etc/nginx
 $ rm -rf /var/log/nginx

2.8.3. Uninstalling MongoDB

Access the server through SSH with an account with administrative privileges.

Uninstall MongoDB with the following commands:

 $ systemctl stop mongod
 $ rpm -qa | grep -i mongo | xargs rpm -e
 $ rm -rf /var/log/mongodb
 $ rm -rf /var/lib/mongodb

42

3. Installing on Kubernetes

3.1. Installation

3.1.1. Concepts overview

In Kubernetes, applications are deployed onto Pods, which represents a running version of a
containerized application.Pods are grouped by Deployments, which represent a set of Pods
running the same application. For instance, should you need to run Horizon in high availability
mode, your deployment will contain 3 pods or more.Applications running in Pods are made
accessible by a Service, which grants a set of Pods an IP address (which can either be internal to
the cluster or accessible on the public Internet through a Load Balancer).

The recommended way of installing on Horizon is through the Horizon’s Helm Chart. Helm is a
package manager for Kubernetes that will generate Kubernetes resources necessary to deploy
Horizon onto your cluster. The official Helm Chart will generate a deployment of one or more Pods
running Horizon on your cluster.

3.1.2. Prerequisites

Before you start, make sure you have the following prerequisites:

• The kubectl command line tool installed and configured to access the destination cluster :
installation.

• The helm command line tool installed and configured to access the destination cluster:
installation.

• A working knowledge of Kubernetes and Helm. If you are new to Kubernetes, we recommend
you read the Kubernetes Basics tutorial. If you are new to Helm, we recommend you read the
Helm Quickstart tutorial.

• A cluster that can pull images from the EVERTRUST container registry. If this is not possible
through Internet, see Running behind a container registry proxy for more information on how
to set up a private registry mirror.

• A license file for your Horizon installation. This file is usually named horizon.lic and should
have been provided to you by EVERTRUST.

• A set of credentials to access the EVERTRUST container repository. You should have received
them from EVERTRUST.

3.1.3. Configuring the namespace

For isolation purposes, we strongly recommend that you create a dedicated namespace for
Horizon:

$ kubectl create namespace horizon

43

https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://helm.sh/docs/intro/quickstart/

The namespace should be empty. In order to run Horizon, you’ll need to create two secrets in that
namespace:

• A license secret containing your Horizon license file

• An image pull secret, allowing Kubernetes to authenticate to the EVERTRUST’s container
repository

Creating the license secret

You should have a license file for your Horizon installation, most probably named horizon.lic. To
convert this file to a Kubernetes secret, run:

$ kubectl create secret generic horizon-license \
 --from-file=license="<path to your license file>" \
 --namespace horizon

Creating the image pull secret

Next, you should configure Kubernetes to authenticate to the EVERTRUST repository using your
credentials. They are necessary to pull the Horizon docker image, you should have received them
upon purchase. Get your username and password and create the secret:

$ kubectl create secret docker-registry evertrust-registry \
 --docker-server=registry.evertrust.io \
 --docker-username="<your username>" \
 --docker-password="<your password>" \
 --namespace horizon

3.1.4. Setting up Helm repository

Now that the application secrets are configured, add the EVERTRUST Helm repository to your
machine:

$ helm repo add evertrust https://repo.evertrust.io/repository/charts

Verify that you have access to the Chart:

$ helm search repo evertrust/horizon
NAME CHART VERSION APP VERSION DESCRIPTION
evertrust/horizon 0.9.1 2.7.0 EverTrust Horizon Helm chart

44

3.1.5. Configuring the chart

You’ll next need to override the defaults values.yaml file of the Helm Chart to reference the secrets
that we’ve created. We’ll provide a minimal configuration for demonstration purposes, but please
do follow our production setup guide before deploying for production.

Create a override-values.yaml file somewhere and paste this into the file:

image:
 pullSecrets:
 - evertrust-registry

license:
 secretName: horizon-license
 secretKey: license

To finish Horizon’s installation, simply run the following command:

$ helm install horizon evertrust/horizon -f override-values.yaml -n horizon

Please allow a few minutes for the Horizon instance to boot up. You are now ready to go on with the
Startup & Login. This instance will allow you to test out if Horizon is working correctly on your
cluster. However, this installation is not production-ready. Follow our Production Checklist to make
sure your instance is fit to run in your production environment.

3.2. Production checklist
Even though the Helm Chart makes installing Horizon a breeze, you’ll still have to set up a few
things to make Horizon resilient enough to operate in a production environment.

3.2.1. Operating the database

All persistant data used by Horizon is stored in the underlying MongoDB database. Therefore, the
database should be operated securely and backed up regularly.

When installing the chart, you face multiple options regarding your database:

• By default, a local MongoDB standalone instance will be spawned in your cluster, using the
bitnami/mongodb chart. No additional configuration is required but it is not production ready
out of the box. You can configure the chart as you would normally below the mongodb key:

mongodb:
 architecture: replicaset
 # Any other YAML value from the chart docs

• If you want to use an existing MongoDB instance, provide the externalDatabase.uri value. The

45

https://github.com/bitnami/charts/tree/master/bitnami/mongodb

URI should be treated as a secret as it must include credentials:

externalDatabase:
 uri:
 valueFrom:
 secretKeyRef:
 name: <secret name>
 key: <secret key>

The chart doesn’t manage the database. You are still in charge of making sure that the database is
correctly backed up. You could either back up manually using mongodump or use a managed service
such as MongoDB Atlas, which will take care of the backups for you.

3.2.2. Managing secrets

Storing secrets is a crucial part of your Horizon installation. On cloud-native installations like on
Kubernetes, we recommend using SSV (Secure Software Vault) to encrypt sensitive data: a master
passphrase will be used to encrypt and decrypt data before they enter the database. Alongside with
other application secrets like your MongoDB URI (containing your credentials or certificate). We
recommend that you create Kubernetes secrets beforehand or inject them directly into the pod.

Values that should be treated as secrets in this chart are:

Name Description Impact on loss

vaults.*.master_password SSV password used to encrypt
sensitive data in database.

Highest impact: database would
be unusable

events.secret Secret used to sign and chain
events.

Moderate impact: events
integrity would be unverifiable

externalDatabase.uri External database URI,
containing a username and
password.

Low impact: reset the MongoDB
password

appSecret Application secret use to
encrypt session data.

Low impact: sessions would be
reset

mailer.password SMTP server password Low impact: reset the SMTP
password

For each of these values, either:

• leave the field empty, so that a secret will be automatically generated.

• derive the secret value from an existing Kubernetes secret:

appSecret:
 valueFrom:
 secretKeyRef:
 name: <secret name>

46

https://www.mongodb.com/atlas

 key: <secret key>

WARNING
Always store auto-generated secrets in a safe place after they’re generated. If
you ever uninstall your Helm chart, the deletion of the SSV secret will lead to
the impossibility of recovering most of your data.

3.2.3. High availability

By default, the chart will configure a single-pod deployment. This deployment method is fine for
testing but not ready for production as a single failure could take down the entire application.
Instead, we recommend that you set up a Horizon cluster using at least 3 pods.

In order to do that, configure an horizontalAutoscaler in your override-values.yaml file:

horizontalAutoscaler:
 enabled: true
 minReplicas: 3
 maxReplicas: 3

NOTE
Use nodeAffinity to spread your Horizon cluster Pods among multiple nodes in
different availability zones to reduce the risk of Single Point of Failure.

If your cluster setup requires specific configurations (that could be due to network or configuration
constraints), we encourage you to check out the Networking overview section of the
documentation.

3.2.4. Configuring ingresses

The recommended way to access Horizon is behind a reverse proxy, known in the Kubernetes
world as "ingress controllers". However, Horizon requires that the reverse proxy in front of it (that
also terminates the TLS connection) requests certificate client authentication (also known as mTLS).

To create an ingress upon installation, simply set the following keys in your override-values.yaml
file:

ingress:
 enabled: true
 hostname: horizon.lab
 tls: true

Identify CAs which will require certificate authentication

You’ll need to gather a list of CAs that will emit certificates which will be able to authenticate to
Horizon. To identify them, ask yourself whether the certificates signed by these CAs will:

47

• renew using the EST protocol (used by the Horizon Client)

• be used to authenticate users to Horizon (either through API or via the UI)

• be used to authenticate the WinHorizon component (in an Active Directory environment)

Other use-cases might also require you to authenticate with a client certificate.

Configure your ingress to require a client certificate

Configuration for mTLS depends on the ingress controller that you use. The following ingress
controllers are officially supported by EVERTRUST, and we strongly advise to use one of them with
Horizon. However, almost any ingress controller can be configured to correctly request client
certificates manually.

ingress-nginx

The Horizon Helm Chart supports autoconfiguring ingress-nginx. To enable client certificate
authentication, simply set the following values in the values-override.yaml file:

ingress:
 enabled: true
 type: nginx
 clientCertificateAuth: true
 hostname: horizon.lab
 tls: true

Skip to the Ensure certificate authentication is effective section to test your configuration.

NOTE

ingress-nginx doesn’t require a list of CAs trusted for client authentication, so any
certificate may be submitted by a connecting client. If you wish to specify a list of
CAs, disable autoconfiguration and manually configure your ingress using
annotations following the ingress-nginx documentation.

Traefik

The Horizon Helm Chart supports autoconfiguring Traefik. To enable client certificate
authentication, simply set the following values in the values-override.yaml file:

ingress:
 enabled: true
 type: traefik
 clientCertificateAuth: true
 hostname: horizon.lab
 tls: true

Skip to the Ensure certificate authentication is effective section to test your configuration.

48

https://kubernetes.github.io/ingress-nginx/examples/auth/client-certs

NOTE

Traefik doesn’t require a list of CAs trusted for client authentication, so any
certificate may be submitted by a connecting client. If you wish to specify a list of
CAs, disable autoconfiguration and manually configure your ingress using
annotations following the Traefik documentation.

Other ingress controllers

If you do not wish or cannot use autoconfiguration, you should ensure your ingress controller is
correctly configured to enable all Horizon features.

• When requiring client certificates for authentication, the web server should not perform checks
to validate that the certificate is signed by a trusted CA. Instead, the certificate should be sent to
Horizon through a request header, base64-encoded. The header name used can be controlled
using the clientCertificateHeader.

• Some endpoints should not be server over HTTPS, in particular those used for SCEP enrollment.
You may want to create an HTTP-only ingress for serving paths prefixed by /scep and /certsrv,
and prevent those from redirecting to HTTPS.

NOTE
The cert-auth-proxy component, maintained by EverTrust, can be used to add client
certificate authentication to any ingress controller which supports passthrough TLS.

Ensure certificate authentication is effective

To ensure that Horizon can properly decode certificates being sent by clients, get a certificate from
a CA configured for client authentication in a cert.pem file and its associated key in a key.pem file.

Then, run the following curl command :

$ curl -k --cert cert.pem --key key.pem https://<Horizon
URL>/api/v1/security/principals/self

If Horizon returns an error, or states that the principal is not authenticated (through a 204 HTTP
code), then certificate authentication is incorrectly configured.

Instead, information about the certificate should be returned in the principal key :

{
 "identity": {
 "identifier": "CN=User, O=EVERTRUST, C=FR", ①
 "name": "User",
 "identityProviderType": "X509", ②
 "identityProviderName": "EVERTRUST CA"
 },
 "permissions": [],
 "roles": null,
 "teams": null,
 "preferences": null,

49

https://doc.traefik.io/traefik/https/tls/#client-authentication-mtls
https://github.com/evertrust/cert-auth-proxy

 "customDashboards": null
}

① The DN of the certificate is used as the principal identifier.

② The identity provider is of type X509.

3.3. Startup & login

3.3.1. Accessing Horizon

Once the Horizon deployment is up and running, you can expose it to access the web UI and start
configuring the instance.

NOTE
By default, Horizon will expose a plain HTTP endpoint on port 9000 and an HTTPS
endpoint on port 9443 (serving a self-signed certificate, unless configured
otherwise).

Expose locally with a port forward

Recommended for testing and debugging, this is the fastest way to connect to your Horizon
instance. The idea is to map a local port of your host computer to the remote port of the Horizon
container.

To do so, run:

kubectl port-forward <horizon pod name> 9000:9000

Horizon will then be available on http://localhost:9000. A more in-depth tutorial on port
forwarding can be found here.

Expose through an ingress controller

When an ingress controller is configured in your cluster, this is the proper way to access Horizon.
To deploy an ingress alongside Horizon, set the ingress.enabled key to true in the Helm Chart’s
values override.

3.3.2. Logging in for the first time

Upon the first startup, an administrator account will be generated for you to log in. This account
has the administrator username and a random password stored on disk, on the master Horizon
pod.

To find out the randomly generated password, run:

kubectl exec $(kubectl get pods -n <namespace> -l "app.kubernetes.io/name=horizon"
--sort-by={.status.podIP} -o jsonpath="{.items[0].metadata.name}") -n <namespace> --

50

http://localhost:9000
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

/bin/sh -c "cat /tmp/tmp.*/adminPassword"

CAUTION
It is highly recommended to create a dedicated administration account and
delete the default one, or at least modify the default administrator password.

3.4. Upgrade
We recommended that you only change values you need to customize in your values.yml file to
ensure smooth upgrading. Always check the upgrading instructions between chart versions.

3.4.1. Upgrading the chart

When upgrading Horizon, you’ll need to pull the latest version of the chart:

$ helm repo update evertrust

Verify that you now have the latest version of Horizon (through the App version column):

$ helm search repo evertrust/horizon
NAME CHART VERSION APP VERSION DESCRIPTION
evertrust/horizon 0.9.3 2.7.0 EverTrust Horizon Helm chart

Launch an upgrade by specifying the new version of the chart through the --version flag in your
command:

$ helm upgrade <horizon> evertrust/horizon \
 --values override-values.yaml \
 --version 0.9.3

3.4.2. Upgrading the database

Horizon requires that you run a script called horizon-upgrade before installing a newer version of
Horizon. This script will migrate the database schemas for compatibility with the new version. You
have two options for running that script : either let Helm do it automatically or run the script
manually from any computer that has Docker.

Automatic database upgrade

By default, the chart will automatically create a Job that runs an upgrade script when it detects that
the Horizon version has changed between two releases. If the upgrade job fails to run, check the
job’s pod logs. When upgrading from an old version of Horizon, you may need to explicitly specify
the version you’re upgrading from using the upgrade.from key. The created pod will pull an image
named horizon-upgrade:2.7.x, so make sure this image will be available to the cluster when
upgrading.

51

Should you wish to disable the automatic upgrade mechanism, just set the upgrade.enabled key to
false.

WARNING
Before upgrading to specific chart version, thoroughly read any Specific chart
upgrade instructions for your version.

Manual database upgrade

If for some reason, you need to manually run the upgrade script, you can use the dockerized
version of the script provided that your host device has access to the Horizon’s MongoDB database.

You can then run the script through Docker:

$ docker run -it --rm registry.evertrust.io/horizon-upgrade:2.7.x \
 -m <mongo uri> \
 -t <target version> \
 -s <source version> # This is required when upgrading from an older version of
Horizon

Or as a Kubernetes job, inside the Horizon cluster:

apiVersion: batch/v1
kind: Job
metadata:
 name: horizon-upgrade
spec:
 template:
 spec:
 containers:
 - name: horizon-upgrade
 image: registry.evertrust.io/horizon-upgrade:2.7.x
 imagePullPolicy: IfNotPresent
 args: [
 "-y",
 "-m", "$(MONGODB_URI)",
 "-s", "<source version>", ①
 "-t", "<target version>"
]
 env:
 - name: MONGODB_URI
 valueFrom:
 secretKeyRef:
 name: horizon ②
 key: mongoUri
 restartPolicy: Never
 backoffLimit: 0

① The source and target values should be updated to match the desired upgrade path

52

② The secret name and key should match where you store the Horizon MongoDB URI, so it will be
injected as an environment variable to the Pod.

3.4.3. Specific chart upgrade instructions

Upgrading to 0.3.0

• Loggers are now configured with an array instead of a dictionary. Check the values.yaml format
and update your override values.yaml accordingly.

• The init dabatabase parameters (initDatabase, initUsername and initPassword) have been
renamed and moved to mongodb.horizon.

Upgrading to 0.5.0

• The ingress definition has changed. The rules and tls keys have been removed in favor of a
more user-friendly hostname that will autoconfigure the ingress rules, and a boolean tls key that
will enable TLS on that ingress. Check the Ingress section.

Upgrading to 0.9.0

• clientCertificateDefaultParsingType has been removed and is no longer supported by Horizon.
Explicitly set the clientCertificateHeader or use ingress autoconfiguration to continue using
client certificate authentication.

• ingress.type will now be strictly validated. It may fail if you use an unsupported value.

• mailer.port, mailer.tls and mailer.ssl are no longer set by default. You must now explicitly set
if you want to use them.

Upgrading to 0.11.0

• New Lease CRD is added.

• akka.conf has been replaced with pekko.conf. It may fail if you use custom configuration
otherwise it will be handled by the helm chart.

Upgrade to 0.16.0

• Switching to native kubernetes leases implementation. CRDs leases aren’t used anymore.

3.5. Uninstallation
To uninstall Horizon from your cluster, simply run:

$ helm uninstall horizon -n horizon

This will uninstall Horizon. If you installed a local MongoDB instance through the Horizon’s chart,
it will also be uninstalled, meaning you’ll lose all data from the instance.

53

WARNING
Before uninstalling Horizon, if you wish to keep your database, please back up
your application secrets (in particular the SSV secret). Without it, you won’t be
able to decrypt your database and it will become useless.

3.6. Advanced usage
Some edge use-cases might not have been included in the previous installation documentation, for
clarity purposes. You may find some of them below.

3.6.1. Running behind a container registry proxy

If your installation environment requires you to whitelist images that can be pulled by the
Kubernetes cluster, you must whitelist the registry.evertrust.io/horizon and
registry.evertrust.io/horizon-upgrade images. It is then possible to override the images being
pulled by setting the global.imageRegistry key in your values.yaml file to point to your private
registry:

global:
 imageRegistry: <YOUR-PRIVATE-REGISTRY>

3.6.2. Leases

To ensure clustering issues get resolved as fast as possible, Horizon can use Kubernetes leases. We
strongly recommend that you use this safety mechanism. However, the feature can be disabled by
setting the leases.enabled key to false.

3.6.3. Injecting extra configuration

Extra Horizon configuration can be injected to the bundled application.conf file to modify low-
level behavior of Horizon. This should be used carefully as it may cause things to break. To do so,
use the extraConfig value in your values.yaml file:

This can be done with the following edits to your values.yaml file:

extraConfig: |
 play.server.http.port = 9999
 horizon {
 notification.mail.attachment.extension.der = "der"
 }

Extra configurations are included at the end of the config file, overriding any previously set config
value.

NOTE
An exhaustive list of configuration options can be found on the reference_config.pdf
page.

54

https://kubernetes.io/docs/concepts/architecture/leases/
reference_config.pdf

3.6.4. Custom startup scripts

Sometimes, you’ll want to run scripts each time the container starts up in order to configure files in
the container or set environment variables. To do so, you’ll need to mount shell scripts into the
/docker-entrypoint.d/ directory in the container. Using the Helm chart, this can be achieved easily
using the following values.yaml overrides:

extraVolumes:
 - name: horizon-entrypoint-scripts
 configMap:
 name: horizon-entrypoint-scripts

extraVolumeMounts:
 - name: horizon-entrypoint-scripts
 mountPath: /docker-entrypoint.d/

Given you’ve previously create a ConfigMap called horizon-entrypoint-scripts:

apiVersion: v1
kind: ConfigMap
metadata:
 name: horizon-entrypoint-scripts
data:
 run-on-startup.sh: |
 echo "Hello World !"

NOTE

By design, Horizon is configured to run as an unprivileged user inside the container
to follow industry best practices. This means that your scripts won’t be able to
perform privileged operations on the container, such as trusting custom CAs. If you
do want to overcome this problem, you can run the container as root, even though
it is generally discouraged.

3.6.5. Networking overview

When installed in HA, Horizon sends messages to other running instances in its cluster. To form the
cluster and set up networking between nodes, Horizon is relying on Pekko, a framework for
building clusterized applications. Understanding how clustering works is important when building
deployments with highly specific needs or when preparing a disaster recovery plan.

When deployed on multiple nodes inside a Kubernetes cluster, the following steps are followed:

1. Discovery: the discovery process locates all nodes that will be used to form a cluster. It relies on
a third-party to give that information, such as a DNS record or the Kubernetes API (which is the
default when deploying using the Helm Chart). For documentation, see Pekko Discovery.

2. Bootstrap: once each node in the cluster has the address of every other node, nodes start to
contact each other. This is done though Pekko Management, a tool for helping nodes coordinate.

55

https://pekko.apache.org
https://pekko.apache.org/docs/pekko/current/discovery/index.html

For documentation, see Pekko Management.

3. Remoting: the cluster is now formed, nodes can communicate with each other. This uses Pekko
Remoting, a higher level protocol for serializing data over multiple transports. Typically, TCP is
used. For documentation, see Pekko Remoting.

This clustering process can be summarized by the below diagram:

Sequence diagram of the cluster management of Horizon

sequenceDiagram
 autonumber
 rect rgb(191, 223, 255)
 Pod1 ->> Kubernetes API: Discovery request
 destroy Kubernetes API
 Kubernetes API ->> Pod1: Returns other pods addresses
 end
 Note right of Pod2: 1-2: Discovery process

 rect rgb(156, 250, 152)
 Pod1 ->> Pod2: Contact Pekko Management
 Pod2 ->> Pod1: Returns already contacted nodes

 break when an existing cluster is found
 Pod1 ->> Pod2: Joins the existing cluster
 end

 break when no existing cluster is found
 Pod1 ->> Pod1: Self-joins and create cluster
 Pod2 ->> Pod1: Joins the created cluster
 end
 end

 Note over Pod1,Pod2: Leader election is performed at this point

 Note right of Pod2: 3-7: Bootstrap process

 rect rgb(250, 148, 142)
 Pod1 ->> Pod2: Exchanges actor messages
 Pod2 ->> Pod1: Exchanges actor messages
 end

 Note right of Pod2: 8-9: Remoting

Traffic between different nodes is described in the below table:

Table 1. Traffic detail for Horizon clustering

Traffic type Diagram color Protocol Port

Kubernetes API Blue HTTP 443

56

https://pekko.apache.org/docs/pekko-management/current/pekko-management.html
https://pekko.apache.org/docs/pekko/current/remoting-artery.html

Traffic type Diagram color Protocol Port

Pekko Management Green HTTP 7626 (by default)

Pekko Remote Red TCP (by default) 17355

3.6.6. Analytics Data Persistence

When analytics are enabled, Horizon uses the filesystem to store and synchronize analytics data.
The analytics module periodically synchronizes this data between MongoDB and the filesystem.
While the analytics data is not critical for the core application functionality, we recommend
enabling data persistence to reduce synchronization overhead.

When persistence is enabled in the Helm chart, Horizon will be deployed as a StatefulSet instead of
a standard Deployment. This configuration utilizes a Persistent Volume Claim (PVC) to ensure
reliable storage and retention of analytics data across pod restarts and rescheduling.

analytics:
 enabled: true

persistence:
 enabled: true
 volumeClaimTemplates:
 analytics:
 storageClass: <YOUR-CLUSTER-STORAGE-CLASS>
 size: "1Gi"

57

4. Installing on Openshift
Installing Horizon on Openshift is very similar to installing on Kubernetes. The main difference is
that you need to use the oc command instead of kubectl. For that reason, you should follow the
Kubernetes installation procedure.

This page details the differences expected betwen Kubernetes and Openshift.

4.1. Security contexts
The default Horizon Helm chart uses the 1001 user to avoid running as root inside the container.
However, on OpenShift, this results in the anyuid SCC being required to run the container. Since a
random non-root UID will be assigned by OpenShift to the container upon startup, this security
measure is unnecessary. It can be safely disabled by adding the following YAML to your values-
override.yaml file:

podSecurityContext:
 enabled: false

containerSecurityContext:
 enabled: false

If you’re using the built-in database for test purposes, you’ll also need to disable the security
context for the database container:

mongodb:
 podSecurityContext:
 enabled: false

 containerSecurityContext:
 enabled: false

WARNING
On OpenShift, you might have to manage volume permissions for the
MongoDB PVC using the Bitnami’s guide.

4.2. Leases
In a large cluster, chances are that CRDs cannot be installed by a regular user. However, Horizon
can be configured to rely on leases that are CRDs for clustering. See the dedicated documentation
section for more information on how leases work.

Leases can be safely disabled without having a large impact on Horizon reliability. They mostly
help in case of a network partition across multiple datacenters or availability zones.

To disable leases, add the following YAML to your values-override.yaml file:

58

https://docs.bitnami.com/general/how-to/troubleshoot-helm-chart-issues/#permission-errors-when-enabling-persistence

leases:
 enabled: false

Then, when installing the helm chart, add the --skip-crds option to ensure that the leases CRD is
not installed.

4.3. Router configuration
When exposing Horizon through the OpenShift router, you need to provide Horizon with a way to
authenticate client certificates. You have two options to do so:

• Install the cert-auth-proxy component as a sidecar of the Horizon pod and use a passthrough
route to forward traffic to Horizon. (recommended)

• Configure the router to ask for client certificates and forward traffic to Horizon.

4.3.1. Using cert-auth-proxy

The cert-auth-proxy component is a small proxy that can be used to authenticate client certificates.
It is installed as a sidecar container to Horizon, and then referenced in place of Horizon in the
OpenShift route or ingress. To install it, add the following YAML to your values-override.yaml file:

clientCertificateHeader: "X-Forwarded-Tls-Client-Cert"

sidecars:
 - name: cert-auth-proxy
 image: registry.evertrust.io/cert-auth-proxy:latest
 imagePullPolicy: Never
 ports:
 - name: https-proxy
 containerPort: 8443
 env:
 - name: UPSTREAM
 value: localhost:9000
 volumeMounts:
 - name: horizon-local-tls
 # This mountPath will enable the certificate for the "horizon.local" route
 mountPath: /var/cert-auth-proxy/certificates/horizon.local

extraVolumes:
 - name: horizon-local-tls
 secret:
 # This secret must contain a valid TLS certificate for route hostname.
 secretName: horizon.local-tls

service:
 extraPorts:
 - name: https-proxy

59

 protocol: TCP
 port: 8443
 targetPort: https-proxy

Then, you can either use the following extra values to override-values.yaml to generate an ingress
with a passthrough route:

ingress:
 enabled: true
 annotations:
 route.openshift.io/termination: "passthrough"
 extraRules:
 - host: "horizon.local"
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: horizon
 port:
 name: https-proxy
 extraTls:
 - hosts:
 - "horizon.local"
 secretName: horizon.local-tls

If you wish to use the Route resource instead, disable the ingress by setting ingress.enabled to false
and manually create the route:

$ oc create route passthrough horizon --service=horizon --port=https-proxy
--hostname=horizon.local

4.3.2. Using the router mTLS configuration

WARNING
This method is no longer recommended since it requires deploying a specific
ingress controller for Horizon purposes. Changing mTLS settings on an ingress
controller affects all routes served by this ingress controller.

Follow the Kubernetes ingress controller configuration procedure. Gather all ACs identified in the
previous step and create a bundle file containing all of them, called ca-bundle.pem.

Then, follow the Openshift documentation to configure the ingress controller serving Horizon
requests to ask for client certificates signed by any of these ACs:

60

https://docs.openshift.com/container-platform/4.9/networking/ingress-operator.html#nw-mutual-tls-auth_configuring-ingress

Upload the ACs to the OpenShift cluster in a configmap

$ oc create configmap router-ca-certs-default --from-file=ca-bundle.pem=ca-bundle.pem
-n openshift-config

Tell the ingress controller to ask for client certificates

$ oc edit IngressController default -n openshift-ingress-operator

And set the following values:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
namespace: openshift-ingress-operator
spec:
 clientTLS:
 clientCertificatePolicy: Optional
 clientCA:
 name: router-ca-certs-default

Then, when installing Horizon through the Chart, set the clientCertificateDefaultParsingType key
to the value haproxy (which is what the Openshift ingress controller is based on).

NOTE

As of 4.14, Openshift will only download CRLs from the certificates in the ca-
bundle.pem chain (inferred from their CRLDPs). This can lead to a TLS handshake
failure when authenticating using a client certificate. Introducing a dummy entity
certificate in the chain might be required to ensure that the operational CAs CRLs
are downloaded by the Openshift ingress controller. See this issue for more
information.

Skip to the Ensure certificate authentication is effective section to test your configuration.

61

https://access.redhat.com/solutions/7008988

5. Running with Docker/Compose
If you just want to try out Horizon, one way of doing so could be to directly run Horizon from
Docker. For resiliency reasons, this is obviously not recommended for production usage.

We provide a Docker image that’s entirely configurable through environment variables. All Docker
examples require that you login to our Docker repository beforehand :

$ docker login registry.evertrust.io

NOTE
If you’re looking to try out Horizon’s features, take a look at the EVERTRUST
Playground. It is a Docker Compose project bundled with demo values to get you
started swiftly.

5.1. Docker Compose example
The simplest way to spin up an Horizon instance is to let Docker Compose manage the required
components :

• the database,

• the Horizon instance

• and (optionally) the reverse proxy.

Copy the following docker-compose.yaml file and tweak it to match your needs :

version: "3.1"
services:
 horizon:
 image: registry.evertrust.io/horizon:2.7.x
 ports:
 - "9000:9000"
 networks:
 - horizon
 environment:
 LICENSE: MI...
 APPLICATION_SECRET: tobechanged
 EVENT_SEAL_SECRET: tobechanged
 VAULT_TYPE: ssv
 VAULT_MASTER_PASSWORD: tobechanged
 HOSTS_ALLOWED.0: .
 MONGODB_URI: mongodb://mongo:27017/horizon
 depends_on:
 - mongo
 healthcheck:
 test: ["CMD", "curl", "-f", "http://localhost:7626/ready"]
 interval: 10s

62

http://github.com/evertrust/playground
http://github.com/evertrust/playground

 timeout: 60s
 retries: 10
 mongo:
 image: mongo:5
 restart: always
 volumes:
 - database:/data/db
 networks:
 - horizon
volumes:
 database: {}
networks:
 horizon: {}

You then only need to run the following in the directory where you created the previous file :

$ docker compose up

Horizon should quickly become available on http://localhost:9000.

5.2. Vanilla Docker example
Pull the latest Horizon image:

$ docker pull registry.evertrust.io/horizon:{page-version}.x

The Horizon Docker image ships with sensible configuration defaults. Most can be configured by
injecting environment variables when running the container, like so:

$ docker run \ -e LICENSE="MI…" -e APPLICATION_SECRET="tobechanged" -e
EVENT_SEAL_SECRET="tobechanged" -e VAULT_TYPE="ssv" -e
VAULT_MASTER_PASSWORD="tobechanged" -e HOSTS_ALLOWED.0="." -e MONGODB_URI="" -p
[port]:9000 \ registry.evertrust.io/horizon:{page-version}.x

5.3. Environment variables

5.3.1. General configuration

Variable Type Description Default

LICENSE string A valid Horizon license
string, base64-encoded.
Can be used if
LICENSE_PATH is empty.

63

http://localhost:9000

Variable Type Description Default

LICENSE_PATH path Path where an Horizon
license file is mounted
inside the container.
Can be used if the
license is not passed
directly through
LICENSE.

APPLICATION_SECRET string Application secret used
by Horizon

MONGODB_URI string A valid MongoDB URI.
See mongo_uri_config.

HOSTS_ALLOWED array Array of hosts. Append
the array index after a
dot (the nth allowed
host variable name
would be
HOSTS_ALLOWED.n).

WARNING
Your license usually contains newline characters, that you must replace by '\n'
when setting it through the environment.

5.3.2. Configure the secrets vault

Variable Type Description Default

VAULT_TYPE string Vault backend. ssv for a
software encrypted
vault. shv for a PKCS#11
HSM.

VAULT_MASTER_PASS
WORD

string When using an ssv
vault, this encryption
key backs all secrets
encrypted in database.

VAULT_MODULE_PATH string Used to connect to an
HSM.

VAULT_SLOT_ID string Used to connect to an
HSM.

VAULT_PIN string Used to connect to an
HSM.

VAULT_LABEL string Used to connect to an
HSM.

64

Variable Type Description Default

VAULT_ALLOW_MAST
ER_KEY_GEN

string Allow key generation
on PKCS#11 devices
when no existing is
found.

5.3.3. Configuring HTTPS

In production, it is strongly recommended to ensure all requests go through a layer of encryption.
Configuring TLS for Horizon will allow your reverse proxy to request Horizon data using TLS.

NOTE
If all settings are left empty, Horizon will generate a self-signed certificate upon
startup and still expose its HTTPS endpoint on

Variable Type Description Default

HTTP_PORT port Port of the HTTP server 9000

HTTPS_PORT port Port of the HTTPS
server

9443

HTTPS_KEYSTORE_PAT
H

string Location where the
keystore containing a
server certificate is
located.

HTTPS_KEYSTORE_PAS
SWORD

string Password for the given
keystore, if required by
the keystore type

HTTPS_KEYSTORE_TYP
E

string Format in which the
keystore is. Can be
either pkcs12, jks or pem
(a base64-encoded DER
certificate)

pkcs12

HTTPS_KEYSTORE_ALG
ORITHM

string The key store algorithm Platform default
algorithm

5.3.4. Mailer configuration

Variable Type Description Default

SMTP_HOST string SMTP host

SMTP_PORT string SMTP port

SMTP_SSL boolean Whether SSL should be
used

SMTP_TLS boolean Whether TLS should be
used

65

Variable Type Description Default

SMTP_USER string SMTP user

SMTP_PASSWORD string SMTP password

5.3.5. Events configuration

Variable Type Description Default

EVENT_CHAINSIGN boolean Whether to sign events
to verify their integrity

true

EVENT_TTL duration Event time to live in
database

EVENT_DISCOVERY_TT
L

duration Discovery events time
to live. Can be shorter
in case a large number
of discovery events are
logged.

5.3.6. Analytics parameters

Variable Type Description Default

ANALYTICS_URL string The absolute path of
the analytics database
file

ANALYTICS boolean Enable all analytics:
certificate, event and
discovery event. A
database file must be
provided through the
ANALYTICS_URL
environment variable

false

CERTIFICATE_ANALYTI
CS

boolean Enable certificate
analytics only. A
database file must be
provided through the
ANALYTICS_URL
environment variable

false

EVENT_ANALYTICS boolean Enable event analytics
only. A database file
must be provided
through the
ANALYTICS_URL
environment variable

false

66

Variable Type Description Default

EVENT_DISCOVERY_AN
ALYTICS

boolean Enable discovery event
analytics only. A
database file must be
provided through the
ANALYTICS_URL
environment variable

false

5.3.7. Advanced parameters

Variable Type Description Default

AKKA_ACTOR_SYSTEM string Name of the actor
system used by Pekko.
Useful if you need to
run multiple instances
of Horizon in the same
Kubernetes namespace.
Due to compatibility
reasons, the variable is
still called Akka.

horizon

SESSION_MAXAGE string Log in session duration. 15 minutes

HTTP_CERTIFICATE_HE
ADER

string Header name in which
the client certificate
should be sent when
using mTLS.

5.4. Injecting extra configuration
The Docker image comes with a simple enough configuration to get started and test the software.
However, it doesn’t include any way to cluster the software with other instances or to edit other
specific configurations. If you need to do so, you can mount custom configuration files, giving you
full control over how Horizon behaves.

The mounted folder :

• MUST contain an pekko.conf file configuring the Pekko cluster. See the reference config to get an
idea over what’s configurable.

• CAN contain a application.conf file containing any extra config options unrelated to clustering.

A typical Docker command would then be :

$ docker run \
 -v [configurationPath]:/opt/horizon/etc/:rw \
 ...

67

https://pekko.apache.org/docs/pekko/current/general/configuration-reference.html

 registry.evertrust.io/horizon:2.7.x

5.5. Custom startup scripts
Sometimes, you’ll want to run scripts each time the container starts up in order to configure files in
the container or set environment variables. To do so, you’ll need to mount shell scripts into the
/docker-entrypoint.d/ directory in the container :

$ docker run \ -v [scriptsPath]:/docker-entrypoint.d/ \
 ...
 registry.evertrust.io/horizon:2.7.x

Where scriptsPath is a directory containing one or multiple shell scripts that will be sourced before
running Horizon.

68

6. Analytics
Analytics can be enabled on Horizon to speed search and dashboards on certificates, events and
discovery events.

It will create an embedded analytics database on each of the Horizon and store a copy of those
objects.

This will increase RAM and CPU consumption on the horizon server itself, but will reduce load on
the database.

NOTE
The analytics database is only used for research; all other operations are done
directly to the mongo database

CAUTION
You should consider enabling the analytics if you have slow interfaces due to a
large number of certificates or events

6.1. Configuring the analytics

6.1.1. RPM

To enable analytics, extra configuration has to be added to Horizon following this guide.

The following configuration key is used to set up the analytics database file:

horizon.analytics.url = "jdbc:duckdb:/opt/horizon/var/analytics.db"

The following configuration keys are used to enable the analytics on certificate, event and/or
discovery event.

horizon.event.analytics.enabled = true
horizon.discovery.event.analytics.enabled = true
horizon.certificate.analytics.enabled = true

The following configuration keys are additional parameters for advanced configuration:

horizon.analytics.pool-size = 10
horizon.analytics.memory-limit = "1GB"

6.1.2. Docker

Environnement variables are available to configure the analytics see the docker analytics parameters.

69

7. Monitoring

7.1. Healthchecks

7.1.1. Liveness check

The liveness check is available on the /alive route of the pekko management port (7626 by default).

It checks that the pekko cluster is operational and performs a ping on the mongo database.

7.1.2. Readiness check

The readiness check is available on the /ready route of the pekko management port (7626 by
default).

It checks that the pekko cluster is operational and verifies that the instance has been bootstrapped.

NOTE
For RPM configuration, this check is proxied by the default NGINX configuration,
and available on /ready

7.2. Metrics

7.2.1. Basic

To enable basic prometheus metrics on port 9095, the following configuration must be applied.

kamon {
 modules {
 prometheus-reporter.enabled = yes
 apm-reporter.enabled = no
 host-metrics.enabled = no
 jvm-metrics.enabled = no
 }

 prometheus {
 include-environment-tags = true
 embedded-server {
 hostname = 0.0.0.0
 port = 9095
 }
 }
}

70

7.2.2. Horizon

Horizon specific metrics can also be exposed on the prometheus endpoint using this configuration
parameter:

horizon.metrics.enabled = true

These metrics include:

• License expiration information

• License usage information

• Horizon version

• Scala version

• PKI Queue size

• PKI Connector status

• Credentials expiration

• Last user activity

NOTE
Additional metrics configuration such as refresh intervals can be found on the
configuration reference page.

71

reference_config.pdf

8. Troubleshooting

8.1. Horizon Doctor

NOTE
Horizon Doctor is currently only available for deployments on CentOS/RHEL. To
troubleshoot deployments on Kubernetes, use built-in tools like events and logs.

Horizon doctor is a tool that performs checks on your Horizon installation as well as its required
dependencies to ensure that everything is configured properly. The tool is targeted towards
troubleshooting during installation or update procedures. Note that the tool requires root
permissions to run.

8.1.1. Performed checks

At the moment, Horizon Doctor checks for:

OS checks

• Checks for installed Horizon version, MongoDB version, Java version, Nginx version, OS
Version.

◦ If the OS is a RedHat distribution, checks if the RedHat subscription is active

◦ If Mongo is not installed locally, it notices it as an information log

• Checks for SELinux's configuration: throws a warning if it is enabled, says ok if it is on
permissive or disabled

• Checks for the status of the necessary services: postfix, mongod, nginx and horizon.

◦ If the postfix service is running, tries to connect via a TCP SYN on the port 25 of the
relayhost specified in the /etc/postfix/main.cf file and throws an error if it can’t.

• Checks how long the Horizon service has been running for.

• Checks if there is an NTP service active on the machine and checks if the system clock is
synchronized with the NTP service.

Config checks

• Checks for existence and permissions of the configuration file: the permissions are expected to
be at least 640 and the file is supposed to belong to horizon:horizon

• Checks for existence and permissions of the licence file: the permissions are expected to be at
least 640 and the file is supposed to belong to horizon:horizon.

• Checks for existence and permissions of the vault file: the permissions are expected to be at
least 640 and the file is supposed to belong to horizon:horizon.

• Checks for the permission of the Horizon directory (default: /opt/horizon): the permission is
expected to be at least 755.

• Checks for the existence of the symbolic link for nginx configuration and runs an nginx -t

72

test.

• Retrieves the Java heap size parameters that were set for Horizon and throws a warning if the
default ones are used (min = 2048 and max = 3072).

• Retrieves the Horizon DNS hostname and stores it for a later test (throws an error if it has not
been set).

• Checks for the Horizon Play Secret and Horizon Event Seal Secret: these are the Horizon
application secrets and should be different from default value thus Horizon Doctor throws an
error if either of them is equal to the default value (changeme).

• Retrieves the MongoDB URI (throws a warning if MongoDB is running on localhost; throws an
error if MongoDB is running on an external instance but the authSource=admin parameter is
missing from the URI).

• Parses the Horizon license file to retrieve its expiration date as well as the license details
(number of holders per category).

Network checks

• Runs a MongoDB ping on the URI, then checks for the database used in the URI (throws a
warning if the database used is not called horizon; throws an error if no database is specified in
the URI).

• Checks for PEKKO High Availability settings: if no node hostname is set up, skips the
remaining HA checks. If 2 nodes are set up, retrieves which node is running the doctor and
checks for the other node. If 3 nodes are set up, retrieves which node is running the doctor and
checks for the other 2 nodes. The check runs as:

◦ if curl is installed, runs a curl request on the Node hostname at alive on the management
port (default is 7626), and if alive runs another curl request on the Node hostname at /ready
on the management port. Both requests should return HTTP/200 if ok, 000 otherwise.

◦ if curl is not installed, uses the built-in Linux TCP socket to run TCP SYN checks on both the
HA communication port (default is 17355) and the management port (default is 7626) on the
Node hostname.

• Checks for firewall configuration. Currently only supports firewalld (RHEL) and a netstat test.

◦ The netstat part will run a netstat command to check if the JVM listening socket is active
(listening on port 9000). If netstat is not installed, it will skip this test.

◦ The firewalld part will check if the HTTP and HTTPS services are opened in the firewall and
if it detected a HA configuration, it will check if the HA ports (both of them) are allowed
through the firewalld. If firewalld is not installed or not active, it will skip this test.

• Checks if IPv6 is active in every network interface and throws a warning if it is the case
(specifying the interface with IPv6 turned on).

TLS checks

• Checks for existence and permissions of the Horizon server certificate file: the permissions
are expected to be at least 640 and the file is supposed to belong to the nginx group.

• Parses the Horizon server certificate file: it should be constituted of the actual TLS server

73

certificate first, then of every certificate of the trust chain (order being leaf to root). It throws a
warning if the certificate is self-signed or raises an error if the trust chain has not been
imported. It otherwise tries to reconstitute the certificate trust chain via the openssl verify
command, and throws an error if it cannot.

• Parses the Horizon server certificate file and checks if the Horizon hostname is present in
the SAN DNS names of the certificate, throws an error if it is not there.

74

8.1.2. Log packing option

If the Horizon doctor is launched with the -l option, it will pack the logs of the last 7 days (in
/opt/horizon/var/log) as well as the startup logs (the /var/log/horizon/horizon.log file) and create a tar
archive.

The -l option accepts an optional parameter that should be an integer (1-99) and will pack the logs of
the last n days instead, as well as the startup logs.

Note that the Horizon doctor will still perform all of its check; the log packing is done at the very
end of the program.

Example of call to pack the logs of the last 7 days:

$ horizon-doctor -l

Example of call to pack the logs of the last 30 days:

$ horizon-doctor -l 30

8.1.3. Saving the doctor’s output

If the Horizon doctor is launched with the -o option, it will perform all of its checks and save the
output in the specified file instead of displaying it into the stdout (default is the command line
interface).

If you use the option, you must provide a filepath in a writable directory.

Example of call to save the output in a file named horizon-doctor.out instead of the stdout:

$ horizon-doctor -o horizon-doctor.out

8.1.4. Help menu

To display Horizon doctor’s help menu, use the -h option.

8.2. Additional checks
• Ensure that you are using an up-to-date web browser when trying to access the Horizon web

interface.

• Ensure that Javascript in turned on in your web browser.

• Ensure that your user machine can access the server where Horizon was installed.

• If several hostnames have been set up for the Horizon interface, ensure that every single one of
them is present in the TLS certificate SAN DNS names.

75

9. Available technical configuration parameters
NOTE To add configuration to your kubernetes deployment, click here.

NOTE To add configuration to your RPM installation, click here.

CAUTION Parameter horizon.security.http.headers.xapi.idprov was deleted.

CAUTION Parameter horizon.security.http.headers.xapi.key was deleted.

CAUTION Parameter horizon.security.http.headers.xapi.id was deleted.

CAUTION Parameter horizon.security.http.headers.xhorizonid was deleted.

CAUTION
Parameter horizon.security.http.headers.[nonceType]_certificate_pop was
deleted.

CAUTION Parameter horizon.acme.order.updater.prefix was deleted.

CAUTION Parameter horizon.acme.response.verifier.prefix was deleted.

CAUTION Parameter horizon.bootstrap.prefix was deleted.

CAUTION Parameter horizon.crl.updater.prefix was deleted.

CAUTION Parameter horizon.ca.prefix was deleted.

CAUTION Parameter horizon.ca.manager.prefix was deleted.

CAUTION Parameter horizon.event.manager.prefix was deleted.

CAUTION Parameter horizon.grading.actor.prefix was deleted.

CAUTION Parameter horizon.grading.manager.prefix was deleted.

CAUTION Parameter horizon.pki.manager.prefix was deleted.

CAUTION Parameter horizon.report.manager.prefix was deleted.

CAUTION Parameter horizon.scheduler.manager.prefix was deleted.

CAUTION Parameter horizon.security.manager.prefix was deleted.

76

CAUTION Parameter horizon.thirdparty.manager.prefix was deleted.

CAUTION Parameter horizon.trigger.manager.prefix was deleted.

CAUTION Parameter horizon.vault.manager.prefix was deleted.

CAUTION Parameter horizon.est.default.key_type was deleted.

CAUTION Parameter horizon.request.search.csv.max-rows was deleted.

CAUTION Parameter horizon.event.search.csv.max-rows was deleted.

CAUTION Parameter horizon.discovery.event.search.csv.max-rows was deleted.

CAUTION Parameter horizon.certificate.search.csv.max-rows was deleted.

9.1. ACME Configuration

9.1.1. horizon.acme.url.default-scheme

horizon.acme.url.default-scheme = "https"

Protocol to use to calculate the ACME base URL if there isn’t any X-Forwarded-Proto nor X-
Forwarded-Host in the header of the request

9.1.2. horizon.acme.url.prefix

horizon.acme.url.prefix = "/acme"

Prefix used to calculate the ACME base URL

9.1.3. horizon.acme.behavior.emulate-boulder

horizon.acme.behavior.emulate-boulder = true

Defines whether Horizon should behave like the Boulder ACME implementation (if set to false,
Horizon will strictly follow the RFC). Only applicable if horizon.acme.http.json.prettify is set to
"true"

WARNING
This parameter replaces horizon.acme.behavior.emulate.boulder. Please modify
your configuration accordingly

77

9.1.4. horizon.acme.behavior.post-as-get

horizon.acme.behavior.post-as-get = true

Whether the ACME API can be used with GET requests instead of POST ones

WARNING
This parameter replaces horizon.acme.behavior.enable.post-as-get.legacy.
Please modify your configuration accordingly

9.1.5. horizon.acme.maximum.timeout

horizon.acme.maximum.timeout = "5m"

Maximum configurable timeout in the ACME profiles

WARNING
This parameter replaces horizon.acme.max.timeout. Please modify your
configuration accordingly

9.1.6. horizon.acme.maximum.retry.delay

horizon.acme.maximum.retry.delay = "1h"

Maximum configurable delay in the ACME profiles

WARNING
This parameter replaces horizon.acme.max.retry.delay. Please modify your
configuration accordingly

9.1.7. horizon.acme.maximum.retry.count

horizon.acme.maximum.retry.count = 15

Maximum configurable retry count in the ACME profiles

WARNING
This parameter replaces horizon.acme.max.retry.count. Please modify your
configuration accordingly

9.1.8. horizon.acme.order.updater.worker

horizon.acme.order.updater.worker = 5

78

Number of instances that will be started for each Horizon node to perform the ACME validation

9.1.9. horizon.acme.order.ttl

horizon.acme.order.ttl = "1m"

Order time to live

9.1.10. horizon.acme.response.verifier.worker

horizon.acme.response.verifier.worker = 5

Number of instances that will be started for each Horizon node to perform the ACME validation

9.1.11. horizon.acme.challenge.entropy

horizon.acme.challenge.entropy = 32

Acme challenge size

9.1.12. horizon.acme.http.json-prettify

horizon.acme.http.json-prettify = true

Http response as sent as prettyfied json

WARNING
This parameter replaces horizon.acme.http.json.prettify. Please modify your
configuration accordingly

9.2. ACME Pki connector configuration

9.2.1. horizon.pki.acme.authorization.interval

horizon.pki.acme.authorization.interval = "3s"

Interval at which authorization validation is checked against the ACME server

9.2.2. horizon.pki.acme.authorization.max-delay

79

horizon.pki.acme.authorization.max-delay = "30s"

Max delay before validation check against the ACME server is abandoned

9.2.3. horizon.pki.acme.authorization.initial-delay

horizon.pki.acme.authorization.initial-delay = "5s"

Initial delay before starting validation check against the ACME server

9.2.4. horizon.pki.acme.order.interval

horizon.pki.acme.order.interval = "5s"

Interval at which order status is checked against the ACME server

9.2.5. horizon.pki.acme.order.max-delay

horizon.pki.acme.order.max-delay = "30s"

Max delay before order retrieval against the ACME server is abandoned

9.3. Analytics Configuration

9.3.1. horizon.event.analytics.actor.timeout

horizon.event.analytics.actor.timeout = "1m"

The timeout for requests to the event analytics actor

9.3.2. horizon.event.analytics.actor.interval

horizon.event.analytics.actor.interval = "5s"

Interval at which the events are synchronized

9.3.3. horizon.event.analytics.enabled

80

horizon.event.analytics.enabled = false

Enable event analytics

9.3.4. horizon.discovery.event.analytics.actor.timeout

horizon.discovery.event.analytics.actor.timeout = "1m"

The timeout for requests to the discovery event analytics actor

9.3.5. horizon.discovery.event.analytics.actor.interval

horizon.discovery.event.analytics.actor.interval = "5s"

Interval at which the discovery events are synchronized

9.3.6. horizon.discovery.event.analytics.enabled

horizon.discovery.event.analytics.enabled = false

Enable discovery event analytics

9.3.7. horizon.certificate.analytics.actor.timeout

horizon.certificate.analytics.actor.timeout = "1m"

The timeout for requests to the certificate analytics actor

9.3.8. horizon.certificate.analytics.enabled

horizon.certificate.analytics.enabled = false

Enable certificate analytics

9.3.9. horizon.analytics.url

horizon.analytics.url = "jdbc:duckdb:"

The url to the analytics database. Should start with jdbc:duckdb: followed by the absolute path of

81

the file.

9.3.10. horizon.analytics.pool-size

horizon.analytics.pool-size = 10

The thread pool size for the analytics operations. Should be equal to ((physical_core_count * 2) +
effective_spindle_count)

9.3.11. horizon.analytics.memory-limit

horizon.analytics.memory-limit = "1GB"

The memory limit to set to the duck db analytics database

9.4. Bootstrap Configuration

9.4.1. horizon.bootstrap.administrator.name

horizon.bootstrap.administrator.name = "administrator"

How long the authentication cache lasts

Default administrator account name

9.4.2. horizon.bootstrap.administrator.display-name

horizon.bootstrap.administrator.display-name = "Horizon Administrator"

Default administrator account display name

WARNING
This parameter replaces horizon.bootstrap.administrator.display.name. Please
modify your configuration accordingly

9.4.3. horizon.bootstrap.administrator.password.path

horizon.bootstrap.administrator.password.path = "var/run/adminPassword"

Relative path of the file where the initial admin password should be stored into

82

9.4.4. horizon.bootstrap.administrator.password.length

horizon.bootstrap.administrator.password.length = 24

Length (in bytes) of the initial admin password

9.4.5. horizon.bootstrap.local.identity.provider

horizon.bootstrap.local.identity.provider = "local"

Default administrator account identity provider to use

9.4.6. horizon.bootstrap.timeout

horizon.bootstrap.timeout = "1m"

Duration after which the bootstrap of Horizon times out

9.5. CA Configuration

9.5.1. horizon.ca.manager.default-cache-idletime

horizon.ca.manager.default-cache-idletime = "30d"

Default idle time after which a CA crl is removed from cache

WARNING
This parameter replaces horizon.ca.manager.cache.default.timetoidle. Please
modify your configuration accordingly

9.5.2. horizon.ca.manager.timeout

horizon.ca.manager.timeout = "1m"

Duration that the CA manager actor will wait to retrieve information about certificates (trust status,
trust chain, …)

9.5.3. horizon.ca.maximum.timeout

horizon.ca.maximum.timeout = "5m"

83

Maximum configurable timeout for CRL/OCSP request for a CA

9.5.4. horizon.ca.maximum.refresh

horizon.ca.maximum.refresh = "7d"

Maximum configurable refresh for a CA’s CRL

9.6. CSV Configuration

9.6.1. horizon.request.search.csv.delimiter

horizon.request.search.csv.delimiter = ";"

The CSV delimiter to use when exporting an HRQL query result to a CSV file

9.6.2. horizon.event.search.csv.delimiter

horizon.event.search.csv.delimiter = ";"

The CSV delimiter to use when exporting an HEQL query result to a CSV file

9.6.3. horizon.discovery.event.search.csv.delimiter

horizon.discovery.event.search.csv.delimiter = ";"

The CSV delimiter to use when exporting an HDQL query result to a CSV file

9.6.4. horizon.certificate.search.item.attribute.separator

horizon.certificate.search.item.attribute.separator = ":"

The CSV item attribute separator to use when exporting an HCQL query result to a CSV file

9.6.5. horizon.certificate.search.item.separator

horizon.certificate.search.item.separator = "\n"

The CSV item separator to use when exporting an HCQL query result to a CSV file

84

9.6.6. horizon.certificate.search.csv.delimiter

horizon.certificate.search.csv.delimiter = ";"

The CSV delimiter to use when exporting an HCQL query result to a CSV file

9.7. Certificate authentication

9.7.1. horizon.security.http.headers.certificate

horizon.security.http.headers.certificate = null

Name of the HTTP header containing the certificate

9.8. Database Configuration

9.8.1. horizon.security.principal.search.timeout

horizon.security.principal.search.timeout = "0s"

Maximum time allowed for security principals search operations. For infinite timeout, use 0s

9.8.2. horizon.request.search.timeout

horizon.request.search.timeout = "0s"

Maximum time allowed for request search and aggregate operations. For infinite timeout, use 0s

9.8.3. horizon.event.search.timeout

horizon.event.search.timeout = "30s"

Maximum time allowed for event search operations. For infinite timeout, use 0s

9.8.4. horizon.discovery.event.search.timeout

horizon.discovery.event.search.timeout = "30s"

Maximum time allowed for discovery event search and aggregate operations. For infinite timeout,

85

use 0s

9.8.5. horizon.certificate.search.timeout

horizon.certificate.search.timeout = "30s"

Maximum time allowed for certificate search and aggregate operations. For infinite timeout, use 0s

9.9. Discovery Event Configuration

9.9.1. horizon.discovery.event.ttl

horizon.discovery.event.ttl = null

Time to live of the discovery events. If not set, events never expire

9.10. Event Configuration

9.10.1. horizon.event.ttl

horizon.event.ttl = null

Time to live of the events. If not set, events never expire

9.10.2. horizon.event.chainsign

horizon.event.chainsign = true

Specify whether to chain and sign the Horizon events to ensure they haven’t been tampered with

9.10.3. horizon.event.seal.algorithm

horizon.event.seal.algorithm = "HS512"

Algorithm to use to hash the signature of the events in Horizon (other possible values are "HS384"
and "HS256")

9.10.4. horizon.event.seal.secret

86

horizon.event.seal.secret = null

Secret to seal the events with

9.10.5. horizon.event.ignore-unsealed-pending

horizon.event.ignore-unsealed-pending = false

Do not throw an error if pending events are unsealed

9.10.6. horizon.event.timeout

horizon.event.timeout = "30s"

Duration after which the event manager times out when trying to retrieve the last signed event in
the database

9.10.7. horizon.event.manager.interval

horizon.event.manager.interval = "5s"

How often will the Event Manager actor check in the database if new a new event appeared to sign
it and display it in the "Events" section of Horizon

9.11. General

9.11.1. horizon.security.pop.iat.future

horizon.security.pop.iat.future = "5s"

Difference of time allowed between the "Issued At Time" and the validation time (or the server
time) (in the future only)

WARNING
This parameter replaces horizon.security.[nonce
type]_certificate_pop.iat.future. Please modify your configuration
accordingly

9.11.2. horizon.security.pop.iat.past

87

horizon.security.pop.iat.past = "5s"

Difference of time allowed between the "Issued At Time" and the validation time (or the server
time) (in the past only)

WARNING
This parameter replaces horizon.security.[nonce
type]_certificate_pop.iat.past. Please modify your configuration accordingly

9.11.3. horizon.security.pop.iat.clock-skew

horizon.security.pop.iat.clock-skew = "30s"

Difference of time allowed between the client time and the server time

WARNING
This parameter replaces horizon.security.[nonce
type]_certificate_pop.iat.clock_skew. Please modify your configuration
accordingly

9.11.4. horizon.security.identity.local.password-
reset.duration

horizon.security.identity.local.password-reset.duration = "2m"

Time to live of a password reset request (from the login prompt)

WARNING
This parameter replaces
horizon.security.local.identity.password.reset.duration. Please modify your
configuration accordingly

9.11.5. horizon.security.trustmanager.enforce-serverauth

horizon.security.trustmanager.enforce-serverauth = false

If set to true, enforces the use of the serverAuth EKU in the server authentication certificates (when
Horizon accesses a service through TLS)

WARNING
This parameter replaces horizon.security.trustmanager.enforce_serverauth.
Please modify your configuration accordingly

88

9.11.6. horizon.security.manager.timeout

horizon.security.manager.timeout = "1m"

Duration after which the security manager times out when trying to authenticate a principal with
its session

9.11.7. horizon.request.default.grace-period

horizon.request.default.grace-period = "30d"

Default grace period for all requests

WARNING
This parameter replaces all of horizon.request.grace_period.[module].[request
workflow]. Please modify your configuration accordingly

9.11.8. horizon.request.default.duration

horizon.request.default.duration = "7d"

Default duration for all requests

WARNING
This parameter replaces all of
horizon.request.default_duration.[module].[request workflow]. Please modify
your configuration accordingly

9.11.9. horizon.intune.revocation.max-requests

horizon.intune.revocation.max-requests = 250

Number of revocation requests downloaded from Intune

Limited to 500 max

WARNING
This parameter replaces horizon.intune.revocation.max_requests. Please
modify your configuration accordingly

9.11.10. horizon.datasource.default-timeout

horizon.datasource.default-timeout = "5s"

89

Default timeout for REST requests for the REST datasource

9.11.11. horizon.scheduler.manager.timeout

horizon.scheduler.manager.timeout = "1m"

Duration after which the Scheduler manager actor times out when retrieving scheduled tasks in the
database

9.11.12. horizon.notification.mail.attachment.extension.der

horizon.notification.mail.attachment.extension.der = "der"

File extension that DER certificates sent as email attachments (through the notifications feature)
will be given

9.11.13. horizon.notification.mail.attachment.extension.p7b

horizon.notification.mail.attachment.extension.p7b = "p7b"

File extension that PKCS#7 certificates sent as email attachments (through the notifications feature)
will be given

9.11.14. horizon.notification.mail.attachment.extension.pem

horizon.notification.mail.attachment.extension.pem = "pem"

File extension that PEM certificates sent as email attachments (through the notifications feature)
will be given

9.11.15. horizon.hql.max-recursion-depth

horizon.hql.max-recursion-depth = 5

Maximum recursion allowed for the HQL queries

9.11.16. horizon.system.monitor.timeout

horizon.system.monitor.timeout = "30s"

90

Timeout for the system monitor loading

9.11.17. horizon.crl.updater.parallelism

horizon.crl.updater.parallelism = 500

Number of certificates per batch when Horizon synchronizes the database with the CRL or update
the cached entries

9.11.18. horizon.crl.synchronizer.refresh-interval

horizon.crl.synchronizer.refresh-interval = "5m"

The refresh interval between CRL synchronizations

9.11.19. horizon.crl.synchronizer.timeout

horizon.crl.synchronizer.timeout = "30s"

Timeout for the synchronizer actor

9.11.20. horizon.thirdparty.manager.timeout

horizon.thirdparty.manager.timeout = "1m"

Timeout for thirdparty synchronization requests

WARNING
This parameter replaces horizon.thirdparty.manager.timeout. Please modify
your configuration accordingly

9.11.21. horizon.pki.manager.maximum.timeout

horizon.pki.manager.maximum.timeout = "5m"

Maximum configurable timeout on the PKI connectors

WARNING
This parameter replaces horizon.pki-connector.max.timeout. Please modify
your configuration accordingly

91

9.11.22. horizon.pki.manager.timeout

horizon.pki.manager.timeout = "1m"

Duration after which the PKI Manager times out when trying to enroll or revoke a certificate

9.11.23. horizon.pki.manager.queue.parallelism

horizon.pki.manager.queue.parallelism = 5

Number of parallel certificate requests (enrollment, revocation…) on the default queue

WARNING
This parameter replaces horizon.pki.manager.default.parallelism. Please
modify your configuration accordingly

9.11.24. horizon.pki.manager.queue.size

horizon.pki.manager.queue.size = 100

Number of certificate requests (enrollment, revocation) that can be queued on the default queue

WARNING
This parameter replaces horizon.pki.manager.default.size. Please modify your
configuration accordingly

9.11.25. horizon.pki.manager.healthcheck.interval

horizon.pki.manager.healthcheck.interval = "5m"

Interval at which the PKI connectors statuses are checked

9.11.26. horizon.show-banner

horizon.show-banner = true

Hide the start-up banner

9.11.27. horizon.est.store-encryption-type

horizon.est.store-encryption-type = "AES_STRONG"

92

Default store encryption type to use when sending centralized EST responses

9.11.28. horizon.scim.discovery-endpoints.authenticated

horizon.scim.discovery-endpoints.authenticated = true

Choose whether or not scim discovery endpoints are authenticated

9.11.29. horizon.automation-policy.default.keytype

horizon.automation-policy.default.keytype = "rsa-2048"

Default key type used for automation when none are specified in the profile

WARNING
This parameter replaces horizon.automation.policy.default.keytype. Please
modify your configuration accordingly

9.11.30. horizon.endpoints

horizon.endpoints = null

Custom endpoint configuration

9.12. Global constraints Configuration

9.12.1. horizon.default.constraints.allowed.domains

horizon.default.constraints.allowed.domains = null

Default allowed domains: a regular expression that the dns or email domains should match

9.12.2. horizon.default.constraints.allowed.email.domains

horizon.default.constraints.allowed.email.domains = null

Default allowed email domains: a regular expression that the email domains should match (after
the @)

93

9.12.3. horizon.default.constraints.allowed.dns.domains

horizon.default.constraints.allowed.dns.domains = null

Default allowed dns domains: a regular expression that the dns domains should match

9.13. Grading Configuration

9.13.1. horizon.grading.manager.timeout

horizon.grading.manager.timeout = "30s"

Duration after which the grading manager times out when retrieving the grading configuration
from the database

9.13.2. horizon.grading.manager.queue.size

horizon.grading.manager.queue.size = 100

How large can the grading manager queue can get before it discards new grading requests

9.13.3. horizon.grading.timeout

horizon.grading.timeout = "30s"

Duration after which the grading actor times out when grading a certificate (upon enrolment)

9.14. HTTP Headers Configuration

9.14.1. horizon.security.http.headers.enforce-connection-
close

horizon.security.http.headers.enforce-connection-close = true

Defines whether HTTP connections should remain open

WARNING
This parameter replaces horizon.http.header.enforce_connection_close. Please
modify your configuration accordingly

94

9.14.2. horizon.security.http.headers.real-ip

horizon.security.http.headers.real-ip = "X-Real-IP"

Name of the HTTP header to use as Real IP

WARNING
This parameter replaces horizon.http.header.realip. Please modify your
configuration accordingly

9.14.3. horizon.security.http.headers.scheme

horizon.security.http.headers.scheme = "X-Forwarded-Proto"

Name of the HTTP header containing the scheme requested - used for ACME

WARNING
This parameter replaces horizon.http.header.scheme. Please modify your
configuration accordingly

9.14.4. horizon.security.http.headers.host

horizon.security.http.headers.host = "X-Forwarded-Host"

Name of the HTTP header containing the host requested - used for ACME

WARNING
This parameter replaces horizon.http.header.host. Please modify your
configuration accordingly

9.15. Metrics Configuration

9.15.1. horizon.metrics.enabled

horizon.metrics.enabled = false

Enable advanced metrics for collection

9.15.2. horizon.metrics.intervals.short

horizon.metrics.intervals.short = "30s"

Interval at which short lived metrics are computed

95

9.15.3. horizon.metrics.intervals.long

horizon.metrics.intervals.long = "5m"

Interval at which background metrics are computed

9.16. Nonce Configuration

9.16.1. horizon.automation.nonce.size

horizon.automation.nonce.size = 32

Size of the nonce value used for the JWT authentication token

9.16.2. horizon.automation.nonce.ttl

horizon.automation.nonce.ttl = "5s"

Time to live of the nonce used to validate the JWT authentication token

9.16.3. horizon.acme.nonce.size

horizon.acme.nonce.size = 32

Size (in bytes) of the challenge stored in the nonce

9.16.4. horizon.acme.nonce.ttl

horizon.acme.nonce.ttl = "5s"

Duration for which a nonce stays in Horizon before being removed

9.16.5. horizon.openid.nonce.size

horizon.openid.nonce.size = 32

Size (in bytes) of the challenge stored in the nonce

WARNING
This parameter replaces
horizon.security.identity.provider.openid.nonce.size. Please modify your

96

configuration accordingly

9.16.6. horizon.openid.nonce.ttl

horizon.openid.nonce.ttl = "5s"

Duration for which a nonce stays in Horizon before being removed

WARNING
This parameter replaces horizon.security.identity.provider.openid.nonce.ttl.
Please modify your configuration accordingly

9.16.7. horizon.request.nonce.size

horizon.request.nonce.size = 32

Size (in bytes) of the challenge stored in the nonce

9.16.8. horizon.request.nonce.ttl

horizon.request.nonce.ttl = "5s"

Duration for which a nonce stays in Horizon before being removed

9.17. OpenID Configuration

9.17.1. horizon.openid.state-separator

horizon.openid.state-separator = "#"

Separator character of the OpenID state

WARNING
This parameter replaces
horizon.security.identity.provider.openid.state.separator. Please modify
your configuration accordingly

9.18. Search Configuration

9.18.1. horizon.security.principal.search.page.default-size

97

horizon.security.principal.search.page.default-size = 50

How many elements to retrieve in a security principals search query if no pageSize has been
specified

WARNING
This parameter replaces horizon.security.principal.search.page.default_size.
Please modify your configuration accordingly

9.18.2. horizon.security.principal.search.page.max-size

horizon.security.principal.search.page.max-size = null

How big can the pageSize parameter be in a security principals search query (Must be a positive
integer)

WARNING
This parameter replaces horizon.security.principal.search.page.max_size.
Please modify your configuration accordingly

9.18.3. horizon.request.search.page.default-size

horizon.request.search.page.default-size = 50

How many elements to retrieve in a request search query if no pageSize has been specified

WARNING
This parameter replaces horizon.request.search.page.default_size. Please
modify your configuration accordingly

9.18.4. horizon.request.search.page.max-size

horizon.request.search.page.max-size = null

How big can the pageSize parameter be in a request search query (Must be a positive integer)

WARNING
This parameter replaces horizon.request.search.page.max_size. Please modify
your configuration accordingly

9.18.5. horizon.event.search.page.default-size

horizon.event.search.page.default-size = 50

How many elements to retrieve in an event search query if no pageSize has been specified

98

WARNING
This parameter replaces horizon.event.search.page.default_size. Please
modify your configuration accordingly

9.18.6. horizon.event.search.page.max-size

horizon.event.search.page.max-size = null

How big can the pageSize parameter be in an event search query (Must be a positive integer)

WARNING
This parameter replaces horizon.event.search.page.max_size. Please modify
your configuration accordingly

9.18.7. horizon.discovery.event.search.page.default-size

horizon.discovery.event.search.page.default-size = 50

How many elements to retrieve in a request search query if no pageSize has been specified

WARNING
This parameter replaces horizon.discovery.event.search.page.default_size.
Please modify your configuration accordingly

9.18.8. horizon.discovery.event.search.page.max-size

horizon.discovery.event.search.page.max-size = null

How big can the pageSize parameter be in a request search query (Must be a positive integer)

WARNING
This parameter replaces horizon.discovery.event.search.page.max_size. Please
modify your configuration accordingly

9.18.9. horizon.certificate.search.page.default-size

horizon.certificate.search.page.default-size = 50

How many elements to retrieve in a request search query if no pageSize has been specified

WARNING
This parameter replaces horizon.certificate.search.page.default_size. Please
modify your configuration accordingly

99

9.18.10. horizon.certificate.search.page.max-size

horizon.certificate.search.page.max-size = null

How big can the pageSize parameter be in a request search query (Must be a positive integer)

WARNING
This parameter replaces horizon.certificate.search.page.max_size. Please
modify your configuration accordingly

9.19. Trigger Configuration

9.19.1. horizon.trigger.retry.initial-delay

horizon.trigger.retry.initial-delay = "5m"

How long must a trigger that fails for the first time wait before retrying

WARNING
This parameter replaces horizon.trigger.retry.initial_delay. Please modify
your configuration accordingly

9.19.2. horizon.trigger.retry.max-attempts

horizon.trigger.retry.max-attempts = 15

Maximum amount of failed attempts that a trigger can have before canceling

WARNING
This parameter replaces horizon.trigger.max.retry. Please modify your
configuration accordingly

9.19.3. horizon.trigger.manager.timeout

horizon.trigger.manager.timeout = "1m"

Trigger manager timeout

9.19.4. horizon.trigger.manager.interval

horizon.trigger.manager.interval = "5m"

How often does the trigger manager check for triggers to run

100

9.20. Vault Configuration

9.20.1. horizon.vault.escrow

horizon.vault.escrow = null

The name of the escrow vault

9.20.2. horizon.vault.configuration

horizon.vault.configuration = null

The name of the configuration vault

9.20.3. horizon.vault.transient

horizon.vault.transient = null

The name of the transient vault

9.20.4. horizon.vault.manager.timeout

horizon.vault.manager.timeout = "1m"

Timeout for encryption requests

101

	EverTrust Horizon documentation v2.7: Installation Guide
	Table of Contents
	1. Introduction
	1.1. Description
	1.2. Prerequisites

	2. Installing on CentOS/RHEL
	2.1. Pre-requisites
	2.2. Installation
	2.3. Configuration
	2.4. Startup & login
	2.5. Upgrade
	2.6. Additional configuration
	2.7. Backup and Restore
	2.8. Uninstallation

	3. Installing on Kubernetes
	3.1. Installation
	3.2. Production checklist
	3.3. Startup & login
	3.4. Upgrade
	3.5. Uninstallation
	3.6. Advanced usage

	4. Installing on Openshift
	4.1. Security contexts
	4.2. Leases
	4.3. Router configuration

	5. Running with Docker/Compose
	5.1. Docker Compose example
	5.2. Vanilla Docker example
	5.3. Environment variables
	5.4. Injecting extra configuration
	5.5. Custom startup scripts

	6. Analytics
	6.1. Configuring the analytics

	7. Monitoring
	7.1. Healthchecks
	7.2. Metrics

	8. Troubleshooting
	8.1. Horizon Doctor
	8.2. Additional checks

	9. Available technical configuration parameters
	9.1. ACME Configuration
	9.2. ACME Pki connector configuration
	9.3. Analytics Configuration
	9.4. Bootstrap Configuration
	9.5. CA Configuration
	9.6. CSV Configuration
	9.7. Certificate authentication
	9.8. Database Configuration
	9.9. Discovery Event Configuration
	9.10. Event Configuration
	9.11. General
	9.12. Global constraints Configuration
	9.13. Grading Configuration
	9.14. HTTP Headers Configuration
	9.15. Metrics Configuration
	9.16. Nonce Configuration
	9.17. OpenID Configuration
	9.18. Search Configuration
	9.19. Trigger Configuration
	9.20. Vault Configuration

