i EVERTRUST

Horizon Issuer

Table of Contents

T OVEIVIEW . oo e 1
2. Installation 2
3. Configuration. 7
A USAGR . - oo 11

Chapter 1. Overview

horizon-issuer is an external issuer for cert-manager that allows to issue certificates through
Horizon, EVERTRUST’s CLM. It relies on cert-manager, the industry standard for managing
certificates in cloud-native environments to operate.

This usage of cert-manager brings multiple advantages:
» Seamless integration into most workflows, since cert-manager is already the standard for

requesting certificates;

* Includes battle-tested features such as automatic certificate renewal, secret management, and
more;

* Benefit from cert-manager’s large ecosystem of integrations with other tools and platforms.

It interacts as a gateway between cert-manager and Horizon, handling CertificateRequests from
cert-manager without having to access secrets such as private keys, which never leave the cluster:

Uno!ev‘lt/ing PKI

%) Signs
CSR
Horizon
(5) Fetches
signed (3) Creates Horizon
certificate request
'V;Bern;t-e; e s - S
1
I e e e e
- Use cases les b !
by @ coses (exomples) \ (1) Requests (2) Generate :
| | N
| : ' N | certificate 0SR :
: : Certificate resources : horizon-issuer :
1 1
TN J ! !
Iy ! I
1 |
| : (j | (6) Stores :
:) ingress-shim : certificate |
| |
) | as secret
DN J |
Iy ! (7) Consumes X
: : (: certificate (1
N N |
: | CSI driver | Kubernetes APT |
G ' L :
'y ! 1
y :)
| 1
\ |

— e = o e = = = = e = - = e e e = e = e e e e = = e =

Figure 1. Overview diagram

Chapter 2. Installation

Prerequisites
Before installing, ensure the following prerequisites are met :

» Have a Kubernetes or OpenShift cluster in a version that’s supported by cert-manager;
* Have helm on a device with administrative access to the cluster (required to install CRDs);

* The cluster can either pull images from Internet or a proxy has been set up for
registry.evertrust.io;

* Have access to an Horizon instance in a supported Horizon version.

Install

Install cert-manager

As horizon-issuer is a cert-manager issuer, cert-manager must be installed in the cluster before
installing horizon-issuer. If not already installed, head to the Releases section on the cert-manager
website and find the latest version.

Helm

$ helm install \

cert-manager oci://quay.io/jetstack/charts/cert-manager \
--version <version> \ @

--namespace cert-manager \

--create-namespace \

--set crds.enabled=true

@ Replace with the version to install.
For details about configurable settings, head to Artifact Hub.

YAML manifests

$ kubectl apply -f https://github.com/cert-manager/cert-
manager/releases/download/<version>/cert-manager.yaml

Replace <version> with the version to install.

Other installation methods (such as cmctl) are available on the cert-manager installation
documentation.

https://cert-manager.io/docs/releases/#currently-supported-releases
https://cert-manager.io/docs/releases/
https://artifacthub.io/packages/helm/cert-manager/cert-manager?modal=values
https://cert-manager.io/docs/installation/
https://cert-manager.io/docs/installation/

Install horizon-issuer

Similarly to cert-manager, we offer either a Helm chart or YAML manifests to install horizon-issuer:

Helm
Add the EVERTRUST Helm repository:

$ helm repo add evertrust https://repo.evertrust.io/repository/charts
Then, install the chart:

$ helm install horizon-issuer evertrust/horizon-issuer -- version <version>

CRD considerations

horizon-issuer needs CRDs to properly work. Similarly to what cert-
manager offers, you have two options when installing the chart :

* Manage CRDs manually: manually install the CRDs using kubectl. In
that case, the following commands before installing or upgrading the
chart:

kubectl apply -f
https://raw.githubusercontent.com/evertrust/horizon-
issuer/v@.3.0/charts/horizon-
issuer/crds/horizon.evertrust.io_clusterissuers.yaml

o kubectl apply -f
https://raw.qgithubusercontent.com/evertrust/horizon-
issuer/v0.3.0/charts/horizon-
issuer/crds/horizon.evertrust.io_issuers.yaml

This ensures that the CRDs are not upgraded by mistake. However, it
requires you to manually upgrade the CRDs when a new version is
released. If you opt for this method, ensure that the installCRDs key is
set to false in your Helm.

* Let the Helm chart manage CRDs: in that case, the CRDs will be
installed and upgraded automatically when installing or upgrading the
chart. To do so, ensure that the installCRDs key is set to true in your
Helm.

YAML manifests

$ kubectl apply -f https://github.com/evertrust/horizon-
issuer/releases/download/<version>/install.yaml

https://cert-manager.io/docs/installation/helm/#3-install-customresourcedefinitions
https://cert-manager.io/docs/installation/helm/#3-install-customresourcedefinitions

Upgrade

Unless noted otherwise in the below upgrade notes, upgrading horizon-issuer is not expected to
break existing behaviors. horizon-issuer having reached 1.0.0, we’ll follow semantic versioning and
denote any breaking changes by releasing a new major version.

Helm
Update the EVERTRUST Helm repository:

$ helm repo update evertrust
Then, install the chart:

$ helm upgrade horizon-issuer evertrust/horizon-issuer --version <version>

YAML manifests

Simply apply the new manifests which should update components:

$ kubectl apply -f https://github.com/evertrust/horizon-
issuer/releases/download/<version>/install.yaml

Specific upgrade notes

Upgrade from v0.3 to v1.0

The Helm Chart has been completely reworked to be generated from the YAML manifests.
Therefore, many keys in the values.yaml files have changed. See the reference values.yaml files to
check with your local configuration for updates. Namely:

* installCRDs has been renamed to crd.enable and set to true by default;

* the image block has been moved to manager.image

Additionally, the already deprecated CRD version vialphal has been removed in favor of the current
vibetal.

Upgrade from v0.2.0 to v0.3.0

In 0.3.0, the CRDs can be managed by the Helm chart itself, similarly to what cert-manager offers. It
means that you have two options when upgrading.

Should you decide to manage CRDs automatically through the Helm chart, you’ll need to update
existing CRDs before upgrading so that they can be managed by the Helm chart. The following
commands are required :

https://github.com/evertrust/horizon-issuer/blob/v1.0.0/deploy/chart/values.yaml
https://cert-manager.io/docs/installation/helm/#3-install-customresourcedefinitions

$ kubectl label crd/clusterissuers.horizon.evertrust.io app.kubernetes.io/managed-
by=Helm
$ kubectl label crd/issuers.horizon.evertrust.io app.kubernetes.io/managed-by=Helm

$ kubectl annotate crd/clusterissuers.horizon.evertrust.io meta.helm.sh/release-
name=<horizon-issuer> meta.helm.sh/release-namespace=<horizon-issuer>

$ kubectl annotate crd/issuers.horizon.evertrust.io meta.helm.sh/release-
name=<horizon-issuer> meta.helm.sh/release-namespace=<horizon-issuer>

Replace replace release-name with your Helm release name and release-namespace with the
namespace you’re installing into.

Upgrade from v0.1.0 to v0.2.0

In 0.2.0, the new CRD version is vibetal, and vialphal is no longer supported. To migrate from the
old version, you must first upgrade the CRDs:

$ kubectl apply -f https://raw.githubusercontent.com/evertrust/horizon-
issuer/v@.2.0/charts/horizon-issuer/crds/horizon.evertrust.io_clusterissuers.yaml
$ kubectl apply -f https://raw.githubusercontent.com/evertrust/horizon-
issuer/v@.2.0/charts/horizon-issuer/crds/horizon.evertrust.io_issuers.yaml

This will not delete your existing Issuer and ClusterIssuer objects, but will allow you to create
resources with the new vibetal version. After having re-created your issuer objects, you can start
the upgrade using Helm :

$ helm upgrade horizon-issuer evertrust/horizon-issuer

Uninstall

Helm
Simply uninstall the chart:

$ helm uninstall horizon-issuer

YAML manifests

Simply delete the manifests using kubectl1:

$ kubectl delete -f https://github.com/evertrust/horizon-
issuer/releases/download/<version>/install.yaml

Uninstalling horizon-issuer will delete any Issuer or ClusterIssuer resources
A created in the cluster. Make sure to backup the configuration properly before
uninstalling.

Chapter 3. Configuration

Before issuing certificates, you’ll have to configure an Issuer or a ClusterIssuer resource. Issuers are
a cert-manager concept that describe the entity that will be used to sign certificates. In horizon-
issuer, an issuer references the following information:

the URL of an Horizon instance;
» areference to a secret with credentials for the Horizon instance;

 the name of the profile that will be used to issue certificates;

other settings such as metadata and optional behaviors.

You can find more information about issuers in the cert-manager documentation. Two types of
issuers are supported:

* an Issuer object, which provides a namespace-scoped issuer. This is the best choice if you
provide namespaces-as-a-service for your users and want to restrict what they can do with the
issuer (for instance to allow them enrolling certificates on a single profile), or want them to
manage their issuers themselves;

* a (ClusterIssuer object, which provides a cluster-scoped issuer. This is the best choice if you
want to provide a single issuer for the entire cluster, allowing users to simply consume the
configured issuer.

Either type of issuer support the same configuration parameters described below.

Configure Horizon
Depending on your desired authorization workflow, you’ll need to configure:

* a WebRA profile on Horizon;
* a principal (user or X509 certificate) with the ability to:

o enroll certificates on the profile, either through the "Enroll" or "Request enroll" permission.
In the latter case, certificates requests will be submitted for approval and marked as
"Pending" in Kubernetes until approved or denied in Horizon.

o renew certificates on the profile through the "Renew" permission;
- optionally, revoke certificates on the profile through the "Revoke" permission, if you want to

revoke certificates;

After granting the correct authorizations, provide your Horizon credentials in a secret you may
create with :

$ kubectl create secret generic horizon-credentials \
--from-literal=username=<horizon username> \
--from-literal=password=<horizon password>

Alternatively, to authenticate using an X509 certificate, use a kubernetes.io/tls Secret instead:

https://cert-manager.io/docs/concepts/issuer/
https://docs.evertrust.fr/horizon/2.8/admin-guide/security/authorization.html#_lifecycle

$ kubectl create secret tls horizon-credentials \
--cert=path/to/tls.crt \
--key=path/to/tls.key

Provision an issuer

You’re ready to create an Issuer or ClusterIssuer object depending on the scope you want to issue
certificates on :

clusterissuer.yaml

apiVersion: horizon.evertrust.io/vibetal
kind: ClusterIssuer
metadata:
name: horizon-clusterissuer @
spec:
url: <horizon instance URL> @
authSecretName: horizon-credentials ®
profile: IssuerProfile @

@ Name of the ClusterIssuer object, used to reference it in Certificate resources.
@ URL of the Horizon instance to connect to.
® Name of the secret containing Horizon credentials.

@ Name of the profile to use when issuing certificates.

Then, apply the issuer manifest with :

$ kubectl apply -f clusterissuer.yaml

Additional configuration

You may provide additional configuration options in the issuer spec.

Trust custom CAs

Your Horizon instance may be presenting a certificate issued by your custom CA. To trust that
certificate, you may specify a CA bundle when creating the issuer through the caBundle field. You
may also completely disable TLS verification by setting skipTLSVerify to true, this is however highly
discouraged.

Example :

apiVersion: horizon.evertrust.io/vibetal
kind: ClusterIssuer

spec:
caBundle: |
————— BEGIN CERTIFICATE-----

skipTLSVerify: false

You can also mount your custom /etc/ssl/certs directory if you wish to have more control over the
underlying OS trust store.

Revoke deleted certificates

By default, Horizon issuer does not revoke certificates deleted from Kubernetes as cert-manager
can reuse the private key kept in the deleted certificate’s secret. If you want to revoke certificates
are they are deleted, set the revokeCertificates property to true on your Issuer or ClusterIssuer
object :

apiVersion: horizon.evertrust.io/vibetal
kind: ClusterIssuer
spec:

revokeCertificates: true

When doing so, you may want to clean up secrets as soon as certificates are revoked.

Use an outbound proxy

If you need to use an outbound proxy to reach your Horizon instance, you may specify it in the
proxy field of your Issuer or ClusterIssuer object:

apiVersion: horizon.evertrust.io/vibetal
kind: ClusterIssuer
spec:

proxy: http://proxy.example.com:8080

Validate the certificate FQDN

In case you want to enforce the coherence of your infrastructure, we offer a DNS validation feature.
When enabled, the issuer will check that a DNS entry matching the certificate CN and every DNS
SANSs exist. If not, the certificate will not be issued. To enable, add the following key to your Issuer
object :

apiVersion: horizon.evertrust.io/vibetal
kind: ClusterIssuer
spec:

dnsChecker:

https://cert-manager.io/docs/usage/certificate/#cleaning-up-secrets-when-certificates-are-deleted

10

server: 8.8.8.8:53

Chapter 4. Usage

Now that your issuer is set up, you may reference it when issuing new certificates. This can be done
by setting the issuerRef key on that certificate :

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: demo-cert
spec:
commonName: demo.org
secretName: demo-cert
issuerRef:
group: horizon.evertrust.io
kind: ClusterIssuer
name: horizon-clusterissuer

Of course, issuing certificates manually is not the usual way of requesting certificates through cert-
manager. You can tap into the long list of integrations provided out of the box by cert-manager.

For instance, if you are using ingress-shim to secure your ingress resources, reference your issuer
using the following annotations when creating your ingress :

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: demo-ingress
annotations:
cert-manager.io/issuer-group: horizon.evertrust.io
cert-manager.io/issuer-kind: ClusterIssuer
cert-manager.io/issuer: horizon-clusterissuer
cert-manager.io/common-name: demo.org

Be sure to set the cert-manager.io/common-name annotation as by default, ingress-
A shim will generate certificates without any DN. This will cause errors on Horizon’s
side.

Configure certificate metadata

Horizon offers useful features to categorize and better understand your certificates through
metadata. You may specify metadata at multiple levels. Values get overridden in the following order
of precedence:

1. Values set in the defaultTemplate object on an Issuer or ClusterIssuer object

2. Values set on annotations either on the Ingress or Certificate object

3. Values set in the overrideTemplate of an Issuer or ClusterIssuer object

11

https://cert-manager.io/docs/usage/

Using defaultTemplate on an issuer

Default templates allows you to set default values for your certificates. These values will be used if
no other value is set by the user on the resource they are issuing. On the Issuer or ClusterIssuer
object, add the following key :

apiVersion: horizon.evertrust.io/vlbetal
kind: ClusterIssuer
spec:
profile: IssuerProfile
url: https://you.evertrust.io
defaultTemplate:
owner: owner-name
team: team-name
contactEmail: owner-email@company.com
labels:
label-name1: label-valuel
authSecretName: horizon-credentials

On an Ingress or Certificate object

You may use the following annotations on ingresses that will be reflected onto the enrolled
certificate :

apiVersion: networking.k8s.i0/v1
kind: Ingress
metadata:
name: ingress-name
annotations:
horizon.evertrust.io/owner: owner-name
horizon.evertrust.io/team: team-name
horizon.evertrust.io/contact-email: owner-email@company.com
horizon.evertrust.io/labels.label-name1: label-valuel
horizon.evertrust.io/labels.label-name2: label-value2

These values, if set, will take precedence over annotations on values set in the defaultTemplate key
of the issuer.

Using overrideTemplate on an issuer

You may also want to ensure certain values are set on every certificate issued by a specific issuer.
This can be done using the overrideTemplate key on an Issuer or ClusterIssuer object. These values
will take precedence over any other value set on the issuer or on the resource being issued:

apiVersion: horizon.evertrust.io/vlbetal
kind: ClusterIssuer

12

spec:
profile: IssuerProfile
url: https://you.evertrust.io
overrideTemplate:
owner: owner-name
team: team-name
contactEmail: owner-email@company.com
labels:
label-name1: label-valuel
authSecretName: horizon-credentials

These values, if set, will take precedence over annotations on an Ingress or Certificate object.

13

Chapter 5. Troubleshooting

Due to the number of components involved in the architecture, it might be hard to pinpoint why a
certificate fails to issue when requested by a workload.

Check whether the certificate request was created

First, ensure that cert-manager created a CertificateRequest resource for the Certificate you
created.

To do so, run the following command:
$ kubectl get certificaterequest -n <namespace>

If the certificate request is not present, check cert-manager logs to see if any error occurred when
trying to create it:

$ kubectl logs -n <cert-manager-namespace> <cert-manager-pod> --tail=100
Investigate the CertificateRequest status
If the certificate request is present but not in a Ready state, check its status for error messages:
$ kubectl describe certificaterequest <certificaterequest-name> -n <namespace>

Look for any error messages in the Status section that could indicate why the request failed.

Check other services logs

If the CertificateRequest shows errors related to the issuer, check the logs of the horizon-issuer
controller for more details:

$ kubectl logs -n <horizon-issuer-namespace> <horizon-issuer-pod> --tail=100

If it shows Horizon-related errors, check the Horizon instance logs or contact EVERTRUST support
for assistance.

14

	Horizon Issuer
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	Chapter 3. Configuration
	Chapter 4. Usage
	Chapter 5. Troubleshooting

