
Horizon Client
Version 1.13, 2025-10-24

Table of Contents
1. Introduction. 1

2. General Configuration and Usage. 3

3. Basic commands . 7

4. Discovery Operations . 8

5. Import operations . 12

6. EST Certificate Lifecycle Operations . 16

7. SCEP Certificate Lifecycle Operations . 27

8. WebRA Certificate Lifecycle Operations. 36

9. Updating a certificate . 47

10. Bulk Operations . 50

11. Automatic TLS Certificate Installation . 52

12. Release notes . 85

12.1. Horizon Cli 1.13.0 release notes . 85

Chapter 1. Introduction

Description
Horizon Client is the client software associated to EverTrust Horizon. This client is developed in
Golang, and compiled for the following platforms:

• Linux for x86-64 and arm64 processors

• Windows for x86-64 processors

• Darwin for x86-64 and arm64 processors

• AIX for ppc64 processors

System requirements
To run Horizon Client the underlying system must comply with the following minimum
requirements :

For certificate lifecycle purposes

• 1 gigahertz (GHz) or faster with 1 or more cores

• 1 gigabyte (GB) of RAM for Linux environments

• 2 gigabyte (GB) of RAM for Microsoft environments

• 10 gigabyte (GB) or larger storage device

For discovery purposes

• 2 gigahertz (GHz) or faster with 2 or more cores

• 2 gigabyte (GB) of RAM for Linux environments

• 4 gigabyte (GB) of RAM for Microsoft environments

• 20 gigabyte (GB) or larger storage device

This document is specific to Horizon Client version 1.13, which may be used with EverTrust
Horizon 2.4.0 or later.

Scope
This document is a guide describing how to use the Horizon Client to perform the following tasks:

• Certificate discovery & import

1

• Certificate lifecycle management

2

Chapter 2. General Configuration and Usage

Installations

Package install/uninstall

Using RPMs file

• Installing the package

yum install horizon-cli-<version>-1.x86_64.rpm

• Uninstalling the package

yum remove horizon-cli

Using MSI file:

To install the package, double click on the MSI file and follow the instructions. To uninstall the
package, simply browse to the Applications & program menu and uninstall the program.

Using binary file:

The linux binary file is usable on any linux distribution, to install it follow the steps below :

• Add the binary file to the "PATH", in order to easily launch it on your shell.

• Apply the executable permission on the binary file

chmod +x horizon-cli.bin

Command line installation & initialization

Use the command below to install the client and generate interactively your configuration file:

horizon-cli install

The configuration file can also be created using command line parameters:

horizon-cli install --endpoint https://horizon-test.com

Use the help to get the full list of available parameters.

3


If you did not use an installer, this command should always be run first to ensure
everything is set up correctly.

Configuration Location
General parameters of Horizon Client are configured through a file placed in one of the following
locations:

Global configuration :

• /opt/horizon/etc/horizon-cli.conf

• [C|D]:\ProgramData\EverTrust\Horizon\horizon-cli.conf

Per-user configuration :

• ~/.horizon-cli/etc/horizon-cli.conf

• [C|D]:\Users\<username>\AppData\Local\horizon-cli\horizon-cli.conf



In case the user running the Horizon Client is an administrator and the global
configuration file is present and accessible by the user, the global configuration
file will be used. Otherwise, the per-user configuration file will be used.

If the per-user configuration file is not present and the global configuration file is
not accessible, the client will throw an error.

Configuration Content


Since version 1.10, the configuration was migrated from JSON to YAML, if you are
upgrading from an earlier version, the configuration migration will be done
automatically and should be seamless.

The configuration file is in YAML format and contains the following:

 api_id: API-ID
 api_key: API-Key
 endpoint: endpoint url. e.g. https://horizon-test.evertrust.fr
 debug: false
 timeout: 2
 proxy: proxy. e.g. http://myproxy.corp.local:3128
 root_ca: Root CA PEM Certificate(s).
 log_file: The log file of Horizon.
 external_proxy: proxy. e.g. http://myproxy.corp.local:3128
 sudo_commands:
 - command_one
 - another_command

4

These parameters may be instead specified or overridden using environment variables, as detailed
in the table below.

Table 1. General configuration parameters

Parameter Environment variable Description

api_id HRZ_APIID The API ID: the identifier of a
local account user defined in
Horizon. Used for discovery,
import modes and for the
revocation in the EST module

api_key HRZ_APIKEY The API Key. Used together with
API ID

endpoint HRZ_ENDPOINT The URL of the Horizon
instance, starting with http or
https and without trailing "/"

debug HRZ_DEBUG Set to true to enable debug
mode of the Horizon Client,
defaults to false if unspecified.

timeout Connection timeout in seconds,
defaults to 2 seconds if
unspecified.

proxy HRZ_HTTPS_PROXY HTTPS proxy used to reach
Horizon (if any), in URL form
which can contain login and
password if needed.

root_ca PEM chain of CA certificates
that issued the TLS certificate
exposed by Horizon. This
parameter is optional, as
preferred way is to put these CA
certificates in the machine trust
store.

log_file HRZ_LOGFILE Log file of horizon. This
parameter is optional, but a
default value is set as the
Horizon Client displays useful
messages on STDOUT and logs
should always be kept.

external_proxy HRZ_EXTERNAL_PROXY HTTPS proxy used to reach
Third Parties (if any), in URL
form which can contain login
and password if needed.

5

Parameter Environment variable Description

sudo_commands HRZ_SUDO_COMMANDS Array of commands that should
be executed using sudo.


In case you want to change the whole configuration file, the HRZ_CONFIG
environment variable can contain an absolute path to the configuration file and
will try to read it before defaulting to the standard configuration as detailed above.


In order to keep backward compatibility, legacy environment variables are still
available and are the same as the one above without the HRZ_ prefix. These should
not be used and should be migrated to HRZ-prefixed one.



You can use the “--help” parameter to get command line help on any command or
sub-command.

horizon-cli <command> <subcommand> --help

6

Chapter 3. Basic commands

Ping
The Ping command can be useful to ensure the client configuration to access Horizon is correct. It
will exit in error if the client could not join the Horizon server.

horizon-cli ping

The --permissions flag will display the permissions associated with the account the client is using,
or if it is not, it will log a message indicating it.

horizon-cli ping --permissions

7

Chapter 4. Discovery Operations
These operations aim at feeding Horizon with certificates discovered on the network through
different means. These certificates will be fed along with appropriate Discovery metadata, such as
IP address or Hostname of the machine on which the discovered certificate is held.

Local Scan
In local scan mode, the Horizon Client will scan the machine it is installed on for certificates, and
reports them to Horizon. Certificates are discovered if they match following conditions:

• They are saved in PEM or DER format in a file that is pointed in a configuration file

• They are contained in a Machine or User "MY" certificate store (Windows Only)

• They are not CA certificates

In local scan mode, Horizon client should be launched with root or administrator rights, or it will
probably fail to discover all certificates.

 horizon-cli localscan --campaign=test


When detecting a path to a certificate file containing an environment variable, a
warning event with code HCL-LOCALSCAN-ENV-001 will be raised

Keystores

To handle keystores, the --containers-passwords option allows to specify keystore passwords to try
on encountered keystore.


When a keystore cannot be opened, a warning event with code HCL-LOCALSCAN-KS-
001 will be raised

Scheduling

In order to perform local scans on a recurring schedule, the Horizon Client offers the possibility to
create periodic tasks to run a scan.

The three supported options for the period parameter are:

• daily - runs the task everyday between 0-4 AM UTC

• weekly - runs the task every Sunday between 0-4 AM UTC

• monthly - runs the task on the first day of the month between 0-4 AM UTC

 horizon-cli localscan --campaign=test --create-periodic-task --period

8

=monthly

This periodic task can be run with a specific user identity on Linux using the user parameter.


horizon-cli localscan --campaign=test --create-periodic-task --period
=monthly --user=horizon-cli

The created task can then be removed using:

 horizon-cli localscan --campaign=test --remove-periodic-task

Network Scan
In network scan mode, the Horizon Client will first connect to Horizon to get the campaign’s
scanning parameters (Hosts and Ports), then perform the network scanning and feed Horizon with
the scan results.

The following algorithm is used for network scanning:

1. If --ping-first flag is given, perform ICMP ping on the defined hosts and discard hosts that are
not reachable

2. Scan the hosts and ports for an open TCP port

3. If TCP port is opened:

◦ If port is not '25', try a TLS handshake. If handshake succeeds, retrieve the certificate and
report it to Horizon

◦ If port is '25', perform SMTP STARTTLS, retrieve the certificate and report it to Horizon

The "timeout" global configuration variable has an impact on both open ports discovery and TLS
handshake. In case you get unexpected handshake errors or EOF, try to increase the timeout.
However, this will also make the network scan perform slower.

 horizon-cli netscan --campaign=test

In order to perform network scans on a recurring schedule, the Horizon Client offers the possibility
to create periodic tasks to run a scan.

The three supported options for the period parameter are:

• daily - runs the task everyday between 0-4 AM UTC

• weekly - runs the task every Sunday between 0-4 AM UTC

• monthly - runs the task on the first day of the month between 0-4 AM UTC

9


horizon-cli netscan --campaign=test --create-periodic-task --period
=monthly

This periodic task can be run with a specific user identity on Linux using the user parameter.


horizon-cli netscan --campaign=test --create-periodic-task --period
=monthly --user=horizon-cli

The created task can then be removed using:

 horizon-cli netscan --campaign=test --remove-periodic-task

nmap import
In nmap import mode, the discovery itself is performed by nmap, using the ssl-cert plugin.
Horizon Client then has the ability to import the nmap scanning results into Horizon using the
nmap import mode.

To be able to do so, nmap needs to be launched with the -oX option, in order to export its scan result
as XML file. This XML file is then passed on to Horizon Client.

 horizon-cli importscan nmap --campaign=test --xmlfile=nmapresults.xml

Qualys Certificate View import
In Qualys Certificate View (CV) import mode, the discovery itself is performed by Qualys CV.
Horizon Client then has the ability to import the Qualys CV scanning results into Horizon using the
qualyscv import mode.

To be able to do so, a technical account must have been created into Qualys CV for Horizon Client,
with appropriate rights to be able to view the scanning results. You need also to identify your
Qualys CV API Gateway URL using the following link.


horizon-cli importscan qualyscv --campaign=test --endpoint
=https://gateway.qg1.apps.qualys.eu --username=testlogin --password
=testpassword

10

https://www.qualys.com/platform-identification/

Nessus Scan Import
In Nessus scan import mode, Horizon Client enables the importation of scanning results from
Nessus into Horizon. This mode allows for a seamless integration of Nessus vulnerability scans into
the Horizon environment.

To utilize this feature, you need to ensure that you have valid credentials for Nessus with the
necessary permissions to access and export scan data and the scan id on which you want to
perform the import. Additionally, you must know your Nessus URL through which Horizon Client
will communicate with the Nessus API and use the "SSL Certificate Information" plugin output to
get the certificates into horizon.


horizon-cli importscan nessus --campaign=test --endpoint
=https://cloud.tenable.com --username=testlogin --password=testpassword
--scan-id=5

11

Chapter 5. Import operations
Import operations are designed to import certificate into Horizon without any metadata. This is
useful mainly when installing Horizon, e.g. to import all certificates from an existing PKI database.

Local Import
In order to be able to import certificates, you need to put them as PEM files in a folder, and launch
Horizon Client by pointing at that folder. Horizon Client will recurse on the folder, find all PEM
files, and import certificates into Horizon. It is advised to use sub-folders to store certificates, so
that you avoid to hit any file-per-folder file system limit.


horizon-cli localimport --campaign=test --path=/path/to/certificates
--source=MyADCS

By default, this command does not import CA certificates. To import CA certificates, use the --enable
-ca-import flag.


horizon-cli localimport --campaign=test --path=/path/to/certificates
--source=MyADCS --enable-ca-import

If you wish to import certificates along with their private keys (e.g. when importing from a PKI
escrow), you need to put them as PKCS#12 files in a folder, and launch Horizon Client by pointing at
that folder. Horizon Client will recurse on the folder, find all PEM files, and import certificates into
Horizon. It is advised to use sub-folders to store certificates, so that you avoid to hit any file-per-
folder file system limit. All the PKCS#12 files must be encrypted using the same password that will
be passed to Horizon Client using the command line.


horizon-cli localimport --campaign=test --path=/path/to/certificates
--source=MyADCS --pfx-password=<pkcs12_password>

You can also import certificates from a csv file. Certificates must be in a column named "certificate".
As of now, three formats are supported:

1. DERBase64: Certificate in DER (binary) Base 64 encoded (default);

2. DERHex: Certificate in DER (binary) Hex String encoded;

3. PEM: Certificate in PEM (with or without the certificate header and footer).


horizon-cli localimport --campaign=test --csv /path/to/csv/file.csv
--csv-separator ";"

12

In order to add technical metadata to the imported certificate, the --csv-metadata flag can be used
to import metadata from a column with the same name. For example, to configure a pki_connector
on each certificate with a file containing the pki_connector column:


horizon-cli localimport --campaign=test --csv /path/to/csv/file.csv
--csv-separator ";" --csv-metadata pki_connector



Supported metadata are:

• pki_connector

• certeurope_id

• digicert_id

• digicert_order_id

• entrust_id

• fcms_id

• gsatlas_id

• metapki_id

Network Import

DigiCert CertCentral

You can import all your valid certificates from DigiCert CertCentral. Please note that only
certificates in "issued" state can be imported. Certificates that are revoked will not be imported.


horizon-cli netimport digicert --campaign=test --digicert-api-key=<api-
key>

AWS ACM

You can import all your valid certificates from AWS ACM. Please note that only certificates in
"issued" state can be imported. Certificates that are revoked will not be imported.


horizon-cli netimport aws-acm --campaign=test --aws-region=<aws-region>
--access-key-id=<aws-access-key-id> --secret-access-key=<aws-secret-
access-key>


AWS Role Assumption is supported. You need to provide the ARN of the role you
wish to assume using the --assume-role-arn option.

13

Azure Key Vault

You can import all your valid certificates from Azure Key Vault. Please note that only certificates in
"issued" state can be imported. Certificates that are in pending state will not be imported.


horizon-cli netimport akv --campaign=test --vault-name=<vault short
name> --azure-tenant=<tenant name> --client-id=<client app Id> --client
-secret=<client app secret>

F5 BIG-IP

You can import all your valid certificates from F5 BIG-IP.


This feature requires the use of an administrator account on the F5 BIG-IP
instance.


horizon-cli netimport bigip --campaign=test --hostname=<F5 BigIp
hostname> --login=<F5 BigIp login> --password=<F5 BigIp password>

It is also possible to import the certificates as managed certificates in Horizon. This will allow
renewal and removal of the certificate upon revocation using Horizon’s triggers mechanism.

In order to activate this behavior, the connector property must reference a valid F5 Connector in
Horizon.


horizon-cli netimport bigip --campaign=test --connector=<Horizon F5
Connector name> --hostname=<F5 BigIp hostname> --login=<F5 BigIp login>
--password=<F5 BigIp password>


In order for the trigger mechanism to work correctly, an Horizon WebRA profile
must use the F5 Connector trigger and a schedule task should reference the
connector and the WebRA profile.

Global Options

• --login-provider specifies the login provider to use for TACACS to connect to the BIG-IP instance

IControl Options

• --partition specifies the F5 partition to retrieve the certificates from

14

AS3 Options

• --as-3 enables AS3 compatibility

• --filter-globs is a list of globs to filter the certificates to import, based on the JSON path in the
AS3 configuration

Akamai CPS

You can import all your valid certificates from Akamai Certificate Provisioning System. To do so,
authentication credentials are required.


horizon-cli netimport akamai --campaign=test --host=<Akamai hostname>
--client-secret=<client secret> --client-token=<client token> --access
-token=<access token>

Gandi

You can import all your valid certificates from Gandi. To do so, authentication credentials are
required.


horizon-cli netimport gandi --campaign=test --access-token=<access
token>

HashiCorp Vault

You can import all your certificates from HashiCorp Vault. The secret engines containing your
certificates must be specified using the --secrets-engines option.

The required permissions for the scan operation are:

path "<engine>/certs/*" {
 capabilities = ["read", "list"]
}

As of the current version, both Token and AppRole authentication are supported. If another
authentication method is required, a Token can be retrieved using Vault APIs and then used for the
scan.


horizon-cli netimport vault --campaign=test --token=<token> --secrets
-engines pki

15

https://techdocs.akamai.com/developer/docs/set-up-authentication-credentials
https://api.gandi.net/docs/authentication/

Chapter 6. EST Certificate Lifecycle Operations

EST Enrollment
Horizon Client is able to use the EST module of Horizon to enroll certificates.

Enrollment modes

The following enrollment modes are supported:

• Authorized user/password in decentralized mode

• Authorized user/password in centralized mode

• Challenge password in decentralized mode

• Challenge password in centralized mode

• Certificate swap in decentralized mode

• Certificate swap in centralized mode

Authorized user

In this enrollment mode, a local user account is created in Horizon for Horizon Client, and the EST
profile on Horizon is configured in authorized mode thus a static username and password can be
provided to Horizon Client for enrollment.They need to be set in general configuration as APIID and
APIKEY.


horizon-cli est enroll --profile=test --cn=TestCN [data parameters]
[key and certificate parameters]

Challenge password

In this enrollment mode, the EST profile on Horizon is set to challenge mode. A request must then
be made on Horizon in order to retrieve the one-time password challenge to be used to authenticate
the EST request.No APIID nor APIKEY need to be set.



Use the --challenge option.

horizon-cli est enroll --challenge=<challenge> --profile=test --cn
=TestCN [data parameters] [key and certificate parameters]

Certificate swap

In this enrollment mode, the EST profile on Horizon is set to x509 mode.The client is then able to
make a request to Horizon by authenticating with an existing certificate.This certificate can be

16

specified either:

• by using the --key and --cert parameters, respectively pointing at the key and the certificate to
be used to authenticate

• by using the --win-store-auth parameter (Windows only), that will look into the "MY" certificate
store (user by default, unless --win-machine-store is specified) for a non-expired certificate
whose CN matches the Common Name specified in --cn parameter



Use the --in-cert, --win-user-store-auth or --win-computer-store-auth option.

horizon-cli est enroll --in-cert=/path/to/cert/to/swap --in-key
=/path/to/key/to/swap --profile=test --key=/path/to/key --cert
=/path/to/cert --cn=TestCN [data parameters] [key and certificate
parameters]

horizon-cli est enroll --win-user-store-auth --profile=test --cn=TestCN
[data parameters] [key and certificate parameters]

Decentralized mode

In decentralized mode, which is the default mode, Horizon Client generates a private key and a
CSR.The CSR is generated according to the given certificate parameters, and the private key and the
retrieved certificate are then stored according to the output parameters.

Centralized mode

In Centralized mode, triggered by adding the “--centralized” parameter to the command line,
Horizon Client generates a fake private key and a CSR.The CSR is generated according to certificate
parameters.The private key generated by Horizon Client is discarded.A random password is
generated and inserted into the CSR.If the enrollment is successful, Horizon generates a private key
and a certificate and sends them back to Horizon Client as PKCS#12, which Horizon Client decodes
using the randomly generated password.The retrieved private key and the retrieved certificate are
then stored according to the output parameters.


The random password generated has 16 characters, letters and numbers.If a
password policy is enforced on Horizon side for the centralized mode in the
considered EST profile, ensure that it is compatible with such characteristics.

General enrollment parameters

Table 2. General parameters

Parameter Description

--profile Horizon’s technical name of the profile to enroll
on. Mandatory

17

--challenge Challenge generated on Horizon on the profile.
Mandatory in challenge mode

--discovery Horizon’s discovery campaign name to use in
order to report the certificate to Horizon after
enrollment

--centralized Switches to centralized enrollment

--script Path to the script to execute after enrollment.
See script for more details

Input certificate parameters (x509 mode)

These parameters define how to find the certificate to swap in x509 mode. It can be stored in the
following formats:

• Key and certificate stored separately in two files, in PEM format (--in-cert & --in-key)

• Key and certificate stored together in a PKCS#12 file (--in-cert & --in-pfx-pwd)

• Key and certificate stored together in a JKS file (--in-cert & --in-jks-pwd & --in-jks-alias &
--in-jks-alias-pwd)

• Key and certificate stored together in Windows certificate store:

◦ Using certificate thumbprint, available in the details tab of windows certificate explorer or
in certutil (--in-cert)

◦ Using the certificate CN (see Windows parameters)

Table 3. Input certificate parameters

Parameter Description

--in-cert Path to the certificate to renew (PEM file,
PKCS#12 file, JKS file) or certificate thumbprint
for Windows certificate store entries

--in-key Path to the private key of the certificate to renew
if --in-cert is a PEM file

--in-pfx-pwd Password for the PKCS#12 file to renew

--in-jks-pwd Password for the JKS file to renew

--in-jks-alias Alias for the JKS file to renew

--in-jks-alias-pwd Alias password for the JKS file to renew

Certificate parameters

Table 4. Data parameters

Parameter Description

--cn Requested subject Common Name. Single value

18

--ou Requested subject OU. Can contain multiple
values

--dnsnames Requested subject alternative name DNS entries.
Can contain multiple values

--ip Requested subject alternative name IP entries.
Can contain multiple values

--emails Requested subject alternative name
RFC822Name entries. Can contain multiple
values

Table 5. Metadata parameters

Parameter Description

--contact-email Contact email of the request. Single value

--owner Owner of the request. Single value

--team Team of the request. Single value

--labels Labels of the request. Can contain multiple
values

Table 6. Crypto parameters

Parameter Description

--key-type Key-type of the certificate. See key types for
more details

Output parameters

These parameters define how to store the retrieved certificate and its associated private key. The
following alternatives are available:

• Key and certificate stored separately in two files, in PEM format. This is typically used by
Apache or NGINX web servers;

• Key and certificate stored together in a PKCS#12 file. This is typically used by Tomcat
application server;

• Key and certificate stored together in Windows certificate store. This is typically used by IIS web
server (see Windows parameters)

Table 7. Output parameters

Parameter Description

--cert Path to the certificate to store

--key Path to the private key to store

--ca-chain Path to the chain to store

--pfx Path to write the PKCS#12 output

19

--pfx-pwd Password for the PKCS#12 output. Mandatory if
--pfx is set

--pfx-aes Enable AES encryption for PKCS#12, compatible
with openssl v3

--jks Path to write the JKS output

--jks-pwd Password for the JKS output. Mandatory if --jks
is set

--jks-alias Alias for the JKS output. Mandatory if --jks is set

--jks-alias-pwd Password for the alias in the JKS output.
Mandatory if --jks is set

--overwrite Always overwrite existing files

Windows parameters

These parameters define how to integrate with the Windows certificate store:

Table 8. Windows parameters

Parameter Description

--win-user-store-auth Triggers the use of Windows current user
certificate store for certificate authentication.
Most recent valid certificate with matching CN
will be used

--win-computer-store-auth Triggers the use of Windows local machine
certificate store for certificate authentication.
Most recent valid certificate with matching CN
will be used

--win-user-store-save Triggers the use of user Windows certificate
store to save the certificate after enrollment

--win-computer-store-save Triggers the use of computer Windows
certificate store to save the certificate after
enrollment

--win-store-use-tpm Triggers the ability to store the certificate in the
Microsoft Platform Crypto Provider KSP. If not
specified, the Microsoft Software Key Storage
Provider KSP will be used

--win-store-use-legacy Triggers the ability to store the certificate in the
legacy Microsoft Enhanced Cryptographic
Provider v1.0 CSP. If not specified, the Microsoft
Software Key Storage Provider KSP will be used

--win-store-set-exportable Marks the key as exportable from the Windows
certificate store. If not specified, the key is not
exportable

20

EST Renewal
The certificate renewal is performed by using the “renew” command.

• it is designed to renew a certificate already issued by Horizon on the same profile.

• it can be scheduled as a periodic task (cron or Scheduled Task), that will perform the renewal
only when the certificate is N days before its expiration. N can be specified using the “--renewal-
interval” parameter, and defaults to 30.



horizon-cli est renew --profile=test --in-cert=/path/to/cert/to/renew
[key and certificate parameters]

horizon-cli est renew --profile=test --win-store-auth --cn=TestCN [key
and certificate parameters]

General renewal parameters

Table 9. General parameters

Parameter Description

--profile Horizon’s technical name of the profile to enroll
on. Mandatory

--discovery Horizon’s discovery campaign name to use in
order to report the certificate to Horizon after
renewal

--centralized Switches to centralized enrollment

--key-type Key-type of the certificate. See key types for
more details

--script Path to the script to execute after renewal. See
script for more details

--renewal-interval Number of days before expiration to trigger the
renewal. Defaults to 30

Input certificate parameters

These parameters define how to find the certificate to renew. It can be stored in the following
formats:

• Key and certificate stored separately in two files, in PEM format (--in-cert & --in-key)

• Key and certificate stored together in a PKCS#12 file (--in-cert & --in-pfx-pwd)

• Key and certificate stored together in a JKS file (--in-cert & --in-jks-pwd & --in-jks-alias &
--in-jks-alias-pwd)

• Key and certificate stored together in Windows certificate store:

21

◦ Using certificate thumbprint, available in the details tab of windows certificate explorer or
in certutil (--in-cert)

◦ Using the certificate CN (see Windows parameters)

Table 10. Input certificate parameters

Parameter Description

--in-cert Path to the certificate to renew (PEM file,
PKCS#12 file, JKS file) or certificate thumbprint
for Windows certificate store entries

--in-key Path to the private key of the certificate to renew
if --in-cert is a PEM file

--in-pfx-pwd Password for the PKCS#12 file to renew

--in-jks-pwd Password for the JKS file to renew

--in-jks-alias Alias for the JKS file to renew

--in-jks-alias-pwd Alias password for the JKS file to renew

Output parameters

These parameters define how to store the retrieved certificate and its associated private key. The
following alternatives are available:

• Key and certificate stored separately in two files, in PEM format. This is typically used by
Apache or NGINX web servers;

• Key and certificate stored together in a PKCS#12 file. This is typically used by Tomcat
application server;

• Key and certificate stored together in Windows certificate store. This is typically used by IIS web
server (see Windows parameters)

Table 11. Output parameters

Parameter Description

--cert Path to the certificate to store

--key Path to the private key to store

--ca-chain Path to the chain to store

--pfx Path to write the PKCS#12 output

--pfx-pwd Password for the PKCS#12 output. Mandatory if
--pfx is set

--pfx-aes Enable AES encryption for PKCS#12, compatible
with openssl v3

--jks Path to write the JKS output

22

--jks-pwd Password for the JKS output. Mandatory if --jks
is set

--jks-alias Alias for the JKS output. Mandatory if --jks is set

--jks-alias-pwd Password for the alias in the JKS output.
Mandatory if --jks is set

--overwrite Always overwrite existing files

Windows parameters

These parameters define how to integrate with the Windows certificate store:

Table 12. Windows parameters

Parameter Description

--cn CN of the certificate to renew in the Windows
certificate store. Use with --win-store-auth

--win-user-store-auth Triggers the use of Windows current user
certificate store for certificate authentication.
Most recent valid certificate with matching CN
will be used

--win-computer-store-auth Triggers the use of Windows local machine
certificate store for certificate authentication.
Most recent valid certificate with matching CN
will be used

--win-user-store-save Triggers the use of user Windows certificate
store to save the certificate after enrollment

--win-computer-store-save Triggers the use of computer Windows
certificate store to save the certificate after
enrollment

--win-store-use-tpm Triggers the ability to store the certificate in the
Microsoft Platform Crypto Provider KSP. If not
specified, the Microsoft Software Key Storage
Provider KSP will be used

--win-store-use-legacy Triggers the ability to store the certificate in the
legacy Microsoft Enhanced Cryptographic
Provider v1.0 CSP. If not specified, the Microsoft
Software Key Storage Provider KSP will be used

--win-store-set-exportable Marks the key as exportable from the Windows
certificate store. If not specified, the key is not
exportable

23

Key Types
Depending on your Horizon version, the following key types are supported:

RSA

To add a RSA key type, the following syntax must be used.

rsa-<key-size>

 rsa-2048, rsa-3072, rsa-4096

ECDSA

To add a ECDSA key type, the following syntax must be used.

ec-<curve>

The following curves are supported:

• secp256r1

• secp384r1

• secp521r1

 ec-secp256r1, ec-secp384r1

EDDSA

To add a EDDSA key type, the following syntax must be used.

ed-<curve>

The following curves are supported:

• Ed25519

 ed-Ed25519

Script parameter
You can tell Horizon Client to launch a script upon successful certificate enrollment or renewal by
using the --script parameter, which takes the path to the script as an argument.

The script will receive arguments passed by Horizon Client in the following order:

1. Issued certificate serial number

24

2. Issued certificate fingerprint (SHA-1 hash of the certificate in DER format - windows store
thumbprint)

3. Issued certificate Subject DN

4. Issued certificate Issuer DN

Below is an example of a very simple bash script:

#!/bin/sh

echo $1
echo $2
echo $3
echo $4

Below is an example of a very simple PowerShell script:

param($serial, $fingerprint, $subject, $issuer)

Write-Output $serial
Write-Output $fingerprint
Write-Output $subject
Write-Output $issuer

Examples
You will find below a few examples detailing how to use the client for EST enrollment in various
context

Decentralized enrollment with challenge, output as key and
certificate

horizon-cli est enroll --challenge=<challenge> --profile=<profile> --key=/path/to/key
--cert=/path/to/cert --cn=test.example.com --dnsnames
=test.example.com,www.test.example.com

Decentralized enrollment with challenge, output as PKCS#12

horizon-cli est enroll --challenge=<challenge> --profile=<profile> --cn
=test.example.com --dnsnames=test.example.com,www.test.example.com --pfx
=/path/to/pkcs12 --pfx-pwd=<pkcs12_password>

25

Centralized enrollment with challenge, output as key and
certificate

horizon-cli est enroll --centralized --challenge=<challenge> --profile=<profile> --cn
=test.example.com --dnsnames=test.example.com,www.test.example.com --cert
=/path/to/cert --key=/path/to/key

Centralized enrollment with challenge, output as PKCS#12

horizon-cli est enroll --centralized --challenge=<challenge> --profile=<profile> --cn
=test.example.com --dnsnames=test.example.com,www.test.example.com --pfx
=/path/to/pkcs12 --pfx-pwd=<pkcs12_password>

Decentralized enrollment with challenge, output in machine
windows store

horizon-cli est enroll --challenge=<challenge> --profile=<profile> --cn
=test.example.com --dnsnames=test.example.com,www.test.example.com --win-store-save
--win-machine-store

Decentralized renewal from certificate and key, output as key
and certificate

horizon-cli est renew --profile=<profile> --in-cert=/path/to/old/cert --in-key
=/path/to/old/key --cert=/path/to/new/cert --key=/path/to/new/key

Decentralized renewal from PKCS#12, output as key and
certificate

horizon-cli est renew --profile=<profile> --in-cert=/path/to/old/pkcs12 --cert
=/path/to/cert --key=/path/to/key

Decentralized renewal using machine windows store

horizon-cli est renew --profile=<profile> --cn=test.example.com --win-store-auth --win
-store-save --win-machine-store

26

Chapter 7. SCEP Certificate Lifecycle Operations
The Horizon Client includes a SCEP client to perform challenge based pre-validated enrollments
and renewals. Its usage is similar to that of the EST client in challenge mode.

Usage:

horizon-cli scep [command] [flags]

SCEP Enrollment
The enroll command allows you to perform a SCEP enrollment operation. It will generate a new
key pair and a CSR based on the content parameters, and send it to the SCEP server to obtain a
certificate.

Enrollment modes

The following enrollment modes are supported:

• Authorized user/password in decentralized mode

• Challenge password in decentralized mode

Authorized user

In this enrollment mode, a local user account is created in Horizon for Horizon Client, and the SCEP
profile on Horizon is configured in authorized mode thus a static username and password can be
provided to Horizon Client for enrollment.They need to be set in general configuration as APIID and
APIKEY.


horizon-cli scep enroll --profile=test --cn=TestCN [data parameters]
[key and certificate parameters]

Challenge password

In this enrollment mode, the SCEP profile on Horizon is set to challenge mode. A request must then
be made on Horizon in order to retrieve the one-time password challenge to be used to authenticate
the SCEP request.No APIID nor APIKEY need to be set.



Use the --challenge option.

horizon-cli scep enroll --challenge=<challenge> --profile=test --cn
=TestCN [data parameters] [key and certificate parameters]

27

General enrollment parameters

Table 13. General parameters

Parameter Description

--profile Horizon’s technical name of the profile to enroll
on. Mandatory

--challenge Challenge generated on Horizon on the profile.
Mandatory in challenge mode

--discovery Horizon’s discovery campaign name to use in
order to report the certificate to Horizon after
enrollment

--script Path to the script to execute after enrollment.
See script for more details

Certificate parameters

Table 14. Data parameters

Parameter Description

--cn Requested subject Common Name. Single value

--ou Requested subject OU. Can contain multiple
values

--dnsnames Requested subject alternative name DNS entries.
Can contain multiple values

--ip Requested subject alternative name IP entries.
Can contain multiple values

--emails Requested subject alternative name
RFC822Name entries. Can contain multiple
values

Table 15. Metadata parameters

Parameter Description

--contact-email Contact email of the request. Single value

--owner Owner of the request. Single value

--team Team of the request. Single value

--labels Labels of the request. Can contain multiple
values

Table 16. Crypto parameters

Parameter Description

28

--key-type Key-type of the certificate. See key types for
more details

Output parameters

These parameters define how to store the retrieved certificate and its associated private key. The
following alternatives are available:

• Key and certificate stored separately in two files, in PEM format. This is typically used by
Apache or NGINX web servers;

• Key and certificate stored together in a PKCS#12 file. This is typically used by Tomcat
application server;

• Key and certificate stored together in Windows certificate store. This is typically used by IIS web
server (see Windows parameters)

Table 17. Output parameters

Parameter Description

--cert Path to the certificate to store

--key Path to the private key to store

--ca-chain Path to the chain to store

--pfx Path to write the PKCS#12 output

--pfx-pwd Password for the PKCS#12 output. Mandatory if
--pfx is set

--pfx-aes Enable AES encryption for PKCS#12, compatible
with openssl v3

--jks Path to write the JKS output

--jks-pwd Password for the JKS output. Mandatory if --jks
is set

--jks-alias Alias for the JKS output. Mandatory if --jks is set

--jks-alias-pwd Password for the alias in the JKS output.
Mandatory if --jks is set

--overwrite Always overwrite existing files

Windows parameters

These parameters define how to integrate with the Windows certificate store:

Table 18. Windows parameters

Parameter Description

--win-user-store-save Triggers the use of user Windows certificate
store to save the certificate after enrollment

29

--win-computer-store-save Triggers the use of computer Windows
certificate store to save the certificate after
enrollment

--win-store-use-tpm Triggers the ability to store the certificate in the
Microsoft Platform Crypto Provider KSP. If not
specified, the Microsoft Software Key Storage
Provider KSP will be used

--win-store-use-legacy Triggers the ability to store the certificate in the
legacy Microsoft Enhanced Cryptographic
Provider v1.0 CSP. If not specified, the Microsoft
Software Key Storage Provider KSP will be used

--win-store-set-exportable Marks the key as exportable from the Windows
certificate store. If not specified, the key is not
exportable

SCEP Renewal
The renew command is designed to work similarly to the enroll command, but with a few
differences:

• It will enroll a certificate based on the --in-cert parameter (or similar, see below) instead of the
content parameters. Only the --key-type parameter is used to generate a new key pair.

• No challenge is needed for a SCEP renewal operation

General renewal parameters

Table 19. General parameters

Parameter Description

--profile Horizon’s technical name of the profile to enroll
on. Mandatory

--discovery Horizon’s discovery campaign name to use in
order to report the certificate to Horizon after
renewal

--key-type Key-type of the certificate. See key types for
more details

--script Path to the script to execute after renewal. See
script for more details

--renewal-interval Number of days before expiration to trigger the
renewal. Defaults to 30

Input certificate parameters

These parameters define how to find the certificate to renew. It can be stored in the following

30

formats:

• Key and certificate stored separately in two files, in PEM format (--in-cert & --in-key)

• Key and certificate stored together in a PKCS#12 file (--in-cert & --in-pfx-pwd)

• Key and certificate stored together in a JKS file (--in-cert & --in-jks-pwd & --in-jks-alias &
--in-jks-alias-pwd)

• Key and certificate stored together in Windows certificate store:

◦ Using certificate thumbprint, available in the details tab of windows certificate explorer or
in certutil (--in-cert)

Table 20. Input certificate parameters

Parameter Description

--in-cert Path to the certificate to renew (PEM file,
PKCS#12 file, JKS file) or certificate thumbprint
for Windows certificate store entries

--in-key Path to the private key of the certificate to renew
if --in-cert is a PEM file

--in-pfx-pwd Password for the PKCS#12 file to renew

--in-jks-pwd Password for the JKS file to renew

--in-jks-alias Alias for the JKS file to renew

--in-jks-alias-pwd Alias password for the JKS file to renew

Output parameters

These parameters define how to store the retrieved certificate and its associated private key. The
following alternatives are available:

• Key and certificate stored separately in two files, in PEM format. This is typically used by
Apache or NGINX web servers;

• Key and certificate stored together in a PKCS#12 file. This is typically used by Tomcat
application server;

• Key and certificate stored together in Windows certificate store. This is typically used by IIS web
server (see Windows parameters)

Table 21. Output parameters

Parameter Description

--cert Path to the certificate to store

--key Path to the private key to store

--ca-chain Path to the chain to store

--pfx Path to write the PKCS#12 output

31

--pfx-pwd Password for the PKCS#12 output. Mandatory if
--pfx is set

--pfx-aes Enable AES encryption for PKCS#12, compatible
with openssl v3

--jks Path to write the JKS output

--jks-pwd Password for the JKS output. Mandatory if --jks
is set

--jks-alias Alias for the JKS output. Mandatory if --jks is set

--jks-alias-pwd Password for the alias in the JKS output.
Mandatory if --jks is set

--overwrite Always overwrite existing files

Windows parameters

These parameters define how to integrate with the Windows certificate store:

Table 22. Windows parameters

Parameter Description

--win-user-store-save Triggers the use of user Windows certificate
store to save the certificate after enrollment

--win-computer-store-save Triggers the use of computer Windows
certificate store to save the certificate after
enrollment

--win-store-use-tpm Triggers the ability to store the certificate in the
Microsoft Platform Crypto Provider KSP. If not
specified, the Microsoft Software Key Storage
Provider KSP will be used

--win-store-use-legacy Triggers the ability to store the certificate in the
legacy Microsoft Enhanced Cryptographic
Provider v1.0 CSP. If not specified, the Microsoft
Software Key Storage Provider KSP will be used

--win-store-set-exportable Marks the key as exportable from the Windows
certificate store. If not specified, the key is not
exportable

Key Types
Depending on your Horizon version, the following key types are supported:

RSA

To add a RSA key type, the following syntax must be used.

32

rsa-<key-size>

 rsa-2048, rsa-3072, rsa-4096

ECDSA

To add a ECDSA key type, the following syntax must be used.

ec-<curve>

The following curves are supported:

• secp256r1

• secp384r1

• secp521r1

 ec-secp256r1, ec-secp384r1

EDDSA

To add a EDDSA key type, the following syntax must be used.

ed-<curve>

The following curves are supported:

• Ed25519

 ed-Ed25519

Script parameter
You can tell Horizon Client to launch a script upon successful certificate enrollment or renewal by
using the --script parameter, which takes the path to the script as an argument.

The script will receive arguments passed by Horizon Client in the following order:

1. Issued certificate serial number

2. Issued certificate fingerprint (SHA-1 hash of the certificate in DER format - windows store
thumbprint)

3. Issued certificate Subject DN

4. Issued certificate Issuer DN

Below is an example of a very simple bash script:

33

#!/bin/sh

echo $1
echo $2
echo $3
echo $4

Below is an example of a very simple PowerShell script:

param($serial, $fingerprint, $subject, $issuer)

Write-Output $serial
Write-Output $fingerprint
Write-Output $subject
Write-Output $issuer

Examples
You will find below a few examples detailing how to use the client for SCEP enrollment in various
context

Enrollment with output as key and certificate

horizon-cli scep enroll --profile=<profile> --challenge=<challenge> --cn
=test.example.com --dnsnames=test.example.com,www.test.example.com --cert
=/path/to/cert --key=/path/to/key

Enrollment with lots of metadata and output as PKCS#12

horizon-cli scep enroll \
 --profile=<profile> \
 --challenge=<challenge> \
 --key-type=rsa-2048 \
 --cn=test.example.com \
 --dnsnames=test.example.com,www.test.example.com \
 --owner="John Doe" \
 --ou="IT" \
 --team="IT" \
 --labels="env:prod" \
 --pfx=/path/to/pkcs12 \
 --pfx-pwd=<pkcs12_password>

34

Renewal with output as key and certificate

horizon-cli scep renew --profile=<profile> --in-cert /path/to/cert --cert
=/path/to/cert --key=/path/to/key

35

Chapter 8. WebRA Certificate Lifecycle
Operations
The Horizon Client can perform post-validated lifecycle operations using the WebRA protocol. This
includes certificate enrollment, renewal and revocation.

WebRA operations validation
Like SCEP and EST, WebRA operations requires the intervention of a third party to validate the
request. Unlike SCEP and EST though, it is a post-validation protocol, meaning that no challenge is
produced before the operation, instead a request is created and sent to the WebRA server, which
will need to be validated or cancelled by an operator with the appropriate rights on the web app.

This means the Horizon Client performs enrollment and renewal operations in two steps:

1. Create the request

2. Once the request is validated, retrieve the certificate

Depending on the time it takes for the request to be validated, the Horizon Client can be configured
to either enter a blocking loop and wait for the request to be validated, or merely create the request
and exit.

If the latter is chosen, the Horizon Client will keep in its internal database the pending request, and
will check for its validation each time the horizon-cli automate routine command is executed. If the
request is validated, the certificate will be retrieved and stored in the appropriate location. If it is
denied, the request will be removed from the database. In some cases you would want to configure
a crontab or scheduled task to perform this check periodically. You can use the command horizon-
cli automate create-periodic-task <period> to help you in the process, or create it manually.

By default, the behavior is to create the request and exit. If you wish for the client to enter a
blocking loop until the request is validated, specify the --now flag.

WebRA Enrollment

General enrollment parameters

Table 23. General parameters

Parameter Description

--profile Horizon’s technical name of the profile to enroll
on. Mandatory

--now Start a blocking loop to wait for request
approval

--discovery Horizon’s discovery campaign name to use in
order to report the certificate to Horizon after
enrollment

36

--script Path to the script to execute after enrollment.
See script for more details

Certificate parameters

Table 24. Data parameters

Parameter Description

--cn Requested subject Common Name. Single value

--ou Requested subject OU. Can contain multiple
values

--dnsnames Requested subject alternative name DNS entries.
Can contain multiple values

--ip Requested subject alternative name IP entries.
Can contain multiple values

--emails Requested subject alternative name
RFC822Name entries. Can contain multiple
values

--ms-guid Requested Microsoft GUID. Single value

--ms-sid Requested Microsoft SID. Single value

Table 25. Metadata parameters

Parameter Description

--contact-email Contact email of the request. Single value

--owner Owner of the request. Single value

--team Team of the request. Single value

--labels Labels of the request. Can contain multiple
values

Table 26. Crypto parameters

Parameter Description

--key-type Key-type of the certificate. See key types for
more details

Output parameters

These parameters define how to store the retrieved certificate and its associated private key. The
following alternatives are available:

• Key and certificate stored separately in two files, in PEM format. This is typically used by
Apache or NGINX web servers;

• Key and certificate stored together in a PKCS#12 file. This is typically used by Tomcat

37

application server;

• Key and certificate stored together in Windows certificate store. This is typically used by IIS web
server (see Windows parameters)

Table 27. Output parameters

Parameter Description

--cert Path to the certificate to store

--key Path to the private key to store

--ca-chain Path to the chain to store

--pfx Path to write the PKCS#12 output

--pfx-pwd Password for the PKCS#12 output. Mandatory if
--pfx is set

--pfx-aes Enable AES encryption for PKCS#12, compatible
with openssl v3

--jks Path to write the JKS output

--jks-pwd Password for the JKS output. Mandatory if --jks
is set

--jks-alias Alias for the JKS output. Mandatory if --jks is set

--jks-alias-pwd Password for the alias in the JKS output.
Mandatory if --jks is set

--overwrite Always overwrite existing files

Windows parameters

These parameters define how to integrate with the Windows certificate store:

Table 28. Windows parameters

Parameter Description

--win-user-store-save Triggers the use of user Windows certificate
store to save the certificate after enrollment

--win-computer-store-save Triggers the use of computer Windows
certificate store to save the certificate after
enrollment

--win-store-use-tpm Triggers the ability to store the certificate in the
Microsoft Platform Crypto Provider KSP. If not
specified, the Microsoft Software Key Storage
Provider KSP will be used

--win-store-use-legacy Triggers the ability to store the certificate in the
legacy Microsoft Enhanced Cryptographic
Provider v1.0 CSP. If not specified, the Microsoft
Software Key Storage Provider KSP will be used

38

--win-store-set-exportable Marks the key as exportable from the Windows
certificate store. If not specified, the key is not
exportable

WebRA Renewal
The webra renew command is designed to work similarly to the webra enroll command, except that
it will enroll a certificate based on the --in-cert parameter (or similar, see below) instead of the
content parameters.

General renewal parameters

Table 29. General parameters

Parameter Description

--key-type Key-type of the certificate. See key types for
more details

--now Start a blocking loop to wait for request
approval

--discovery Horizon’s discovery campaign name to use in
order to report the certificate to Horizon after
renewal

--script Path to the script to execute after renewal. See
script for more details

--renewal-interval Number of days before expiration to trigger the
renewal. Defaults to 30

Input certificate parameters

These parameters define how to find the certificate to renew. It can be stored in the following
formats:

• Key and certificate stored separately in two files, in PEM format (--in-cert & --in-key)

• Key and certificate stored together in a PKCS#12 file (--in-cert & --in-pfx-pwd)

• Key and certificate stored together in a JKS file (--in-cert & --in-jks-pwd & --in-jks-alias &
--in-jks-alias-pwd)

• Key and certificate stored together in Windows certificate store:

◦ Using certificate thumbprint, available in the details tab of windows certificate explorer or
in certutil (--in-cert)

Table 30. Input certificate parameters

Parameter Description

39

--in-cert Path to the certificate to renew (PEM file,
PKCS#12 file, JKS file) or certificate thumbprint
for Windows certificate store entries

--in-key Path to the private key of the certificate to renew
if --in-cert is a PEM file

--in-pfx-pwd Password for the PKCS#12 file to renew

--in-jks-pwd Password for the JKS file to renew

--in-jks-alias Alias for the JKS file to renew

--in-jks-alias-pwd Alias password for the JKS file to renew

Output parameters

These parameters define how to store the retrieved certificate and its associated private key. The
following alternatives are available:

• Key and certificate stored separately in two files, in PEM format. This is typically used by
Apache or NGINX web servers;

• Key and certificate stored together in a PKCS#12 file. This is typically used by Tomcat
application server;

• Key and certificate stored together in Windows certificate store. This is typically used by IIS web
server (see Windows parameters)

Table 31. Output parameters

Parameter Description

--cert Path to the certificate to store

--key Path to the private key to store

--ca-chain Path to the chain to store

--pfx Path to write the PKCS#12 output

--pfx-pwd Password for the PKCS#12 output. Mandatory if
--pfx is set

--pfx-aes Enable AES encryption for PKCS#12, compatible
with openssl v3

--jks Path to write the JKS output

--jks-pwd Password for the JKS output. Mandatory if --jks
is set

--jks-alias Alias for the JKS output. Mandatory if --jks is set

--jks-alias-pwd Password for the alias in the JKS output.
Mandatory if --jks is set

--overwrite Always overwrite existing files

40

Windows parameters

These parameters define how to integrate with the Windows certificate store:

Table 32. Windows parameters

Parameter Description

--win-user-store-save Triggers the use of user Windows certificate
store to save the certificate after enrollment

--win-computer-store-save Triggers the use of computer Windows
certificate store to save the certificate after
enrollment

--win-store-use-tpm Triggers the ability to store the certificate in the
Microsoft Platform Crypto Provider KSP. If not
specified, the Microsoft Software Key Storage
Provider KSP will be used

--win-store-use-legacy Triggers the ability to store the certificate in the
legacy Microsoft Enhanced Cryptographic
Provider v1.0 CSP. If not specified, the Microsoft
Software Key Storage Provider KSP will be used

--win-store-set-exportable Marks the key as exportable from the Windows
certificate store. If not specified, the key is not
exportable

WebRA Import
The `webra import`command is designed to import a certificate and its key on a profile.

Import parameters

Table 33. WebRA import parameters

Parameter Description

--profile Existing profile on which to import

Table 34. Metadata parameters

Parameter Description

--owner Owner of the request. Single value

--team Team of the request. Single value

--contact-email Contact email of the request. Single value

--labels Labels of the request. Can contain multiple
values

--metadata Technical metadata of the imported certificate,
in key:value form

41

Input parameters

These parameters define how to find the certificate to import. It can be stored in the following
formats:

• Key and certificate stored separately in two files, in PEM format (--in-cert & --in-key)

• Key and certificate stored together in a PKCS#12 file (--in-cert & --in-pfx-pwd)

• Key and certificate stored together in a JKS file (--in-cert & --in-jks-pwd & --in-jks-alias &
--in-jks-alias-pwd)

• Key and certificate stored together in Windows certificate store:

◦ Using certificate thumbprint, available in the details tab of windows certificate explorer or
in certutil (--in-cert)

Table 35. WebRA input certificate parameters

--in-cert Path to the Certificate to import (PEM file,
PKCS#12 file, JKS file) or cert thumbprint for
Windows certificate store entries

--in-key Path to the private key of the certificate to
import if it is not included in the certificate file

--in-pfx-pwd Password for the PKCS#12 file to import

--in-jks-pwd Password for the JKS file to import

--in-jks-alias Alias for the certificate to import in the JKS file

--in-jks-alias-pwd Alias password for the JKS file to import

WebRA Revocation
The webra revoke command takes the following parameters:

Revocation parameters

Define how to revoke this certificate:

Table 36. WebRA revocation parameters

Parameter Description

--reason Reason for revocation (unspecified,
keycompromise, cacompromise, affiliationchanged,
superseded, cessationofoperation)

Input parameters

These parameters define how to find the certificate to revoke. It can be stored in the following
formats:

42

• Key and certificate stored separately in two files, in PEM format (--in-cert & --in-key)

• Key and certificate stored together in a PKCS#12 file (--in-cert & --in-pfx-pwd)

• Key and certificate stored together in a JKS file (--in-cert & --in-jks-pwd & --in-jks-alias &
--in-jks-alias-pwd)

• Key and certificate stored together in Windows certificate store:

◦ Using certificate thumbprint, available in the details tab of windows certificate explorer or
in certutil (--in-cert)

Table 37. WebRA input certificate parameters

--in-cert Path to the Certificate to revoke (PEM file,
PKCS#12 file, JKS file) or cert thumbprint for
Windows certificate store entries

--in-key Path to the private key of the certificate to
revoke if it is not included in the certificate file

--in-pfx-pwd Password for the PKCS#12 file to revoke

--in-jks-pwd Password for the JKS file to revoke

--in-jks-alias Alias for the certificate to revoke in the JKS file

--in-jks-alias-pwd Alias password for the JKS file to revoke

For a revocation operation, the --now flag is unavailable, and the automate routine command will
not track the revocation status, as no actions are to be performed after the revocation is complete.
This command thus merely creates the revocation request and exits.

Key Types
Depending on your Horizon version, the following key types are supported:

RSA

To add a RSA key type, the following syntax must be used.

rsa-<key-size>

 rsa-2048, rsa-3072, rsa-4096

ECDSA

To add a ECDSA key type, the following syntax must be used.

ec-<curve>

The following curves are supported:

43

• secp256r1

• secp384r1

• secp521r1

 ec-secp256r1, ec-secp384r1

EDDSA

To add a EDDSA key type, the following syntax must be used.

ed-<curve>

The following curves are supported:

• Ed25519

 ed-Ed25519

Script parameter
You can tell Horizon Client to launch a script upon successful certificate enrollment or renewal by
using the --script parameter, which takes the path to the script as an argument.

The script will receive arguments passed by Horizon Client in the following order:

1. Issued certificate serial number

2. Issued certificate fingerprint (SHA-1 hash of the certificate in DER format - windows store
thumbprint)

3. Issued certificate Subject DN

4. Issued certificate Issuer DN

Below is an example of a very simple bash script:

#!/bin/sh

echo $1
echo $2
echo $3
echo $4

Below is an example of a very simple PowerShell script:

param($serial, $fingerprint, $subject, $issuer)

Write-Output $serial

44

Write-Output $fingerprint
Write-Output $subject
Write-Output $issuer

Examples
You will find below a few examples detailing how to use the client for WebRA enrollment in various
context

Enrollment with output as key and certificate, waiting for the
certificate to be issued

horizon-cli webra enroll --profile=<profile> --cn=test.example.com --dnsnames
=test.example.com,www.test.example.com --cert=/path/to/cert --key=/path/to/key --now

Enrollment with lots of metadata, output as PKCS#12 and no
blocking loop

horizon-cli webra enroll \
 --profile=<profile> \
 --cn=test.example.com \
 --dnsnames=test.example.com,www.test.example.com \
 --owner="John Doe" \
 --ou="IT" \
 --team="IT" \
 --labels="env:prod" \
 --pfx=/path/to/pkcs12 \
 --pfx-pwd=<pkcs12_password>



after this command, run periodically:

horizon-cli automate routine > /path/to/my/logfile

Renewal with output as key and certificate, waiting for the
certificate to be issued

horizon-cli webra renew --in-cert /path/to/old/cert --in-key /path/to/old/key --cert
/path/to/cert --key /path/to/key --now

45

Revocation of a certificate

horizon-cli webra revoke --in-cert /path/to/cert --in-key /path/to/key

46

Chapter 9. Updating a certificate
The horizon client can perform update operations on certificates using the update-cert command.
This will modify the information associated with the certificate on Horizon.

This command can either be used to update a certificate present on your machine or to update
certificates on Horizon using an account with sufficient permission.


To update a local certificate, the 'Update (pop)' common configuration permission
must be enabled on the profile the certificate is linked to.

General Parameters
--confirm The command asks for confirmation after the

changes are computed. Use this flag to disable
this behavior and proceed directly. (Optional)

--prompt Use this flag to be prompted for edition of all the
certificate fields. In this mode, using enter on an
existing value means the value is not changed.
(Optional)

Update Parameters
An update concerns only metadata fields, that is fields added by Horizon.

--owner Set the owner of the certificate. An empty string
means deletion of this information. (Optional)

--team Set the team of the certificate. An empty string
means deletion of this information. (Optional)

--contact-email Set the contact email of the certificate. An empty
string means deletion of this information.
(Optional)

--labels Set the labels of the certificate. An empty string
means deletion of this information. (Optional)

--metadata Set the technical metadata of the certificate. To
use with caution. An empty string means
deletion of this information. (Optional)

Certificate selection parameters

Local certificate

The update is only possible on local certificates for which you possess the key:

47

--cert Path to the certificate to update (PEM file,
PKCS#12 file, JKS file) or cert thumbprint for
Windows certificate store entries. (Optional)

--key Path to the private key of the certificate to
update if it is not included in the certificate file.
(Optional)

--pfx-pwd Password for the PKCS#12 file to update.
(Optional)

--jks-pwd Password for the JKS file to update. (Optional)

--jks-alias Alias for the JKS file to update. (Optional)

--jks-alias-pwd Alias password for the JKS file to update.
(Optional)

Certificate on Horizon server

An account must be configured on the client using horizon-cli install and it must have update
permissions on the certificate

--id Id of the certificate to update (Optional)

Examples
You will find below a few examples detailing how to use the client to update certificates in various
contexts

Updating the owner of a certificate

horizon-cli update-cert --cert=/path/to/cert --key=/path/to/key --owner=newowner

Removing the team from a certificate stored in JKS file

horizon-cli update-cert --cert=/path/to/cert.jks --jks-pwd=<jks_password> --team=""

Updating labels and metadata of a certificate stored in
windows certificate store

horizon-cli update-cert --cert=<certificate_thumbprint> --labels
="label1:value1,label2:value2" --metadata="metadata1:value1,metadata2:value2"

48

Updating contact email of a certificate referenced on Horizon

horizon-cli update-cert --id=<certificate_id> --contact-email="test@evertrust.fr"

49

Chapter 10. Bulk Operations
The horizon client allows you to perform bulk operations on certificates using the Horizon
Certificate Query Language (HCQL).

Bulk update
The bulk update command allows update of certificate metadata en masse. The command takes a
HCQL query as parameter and updates the matching certificates with the provided metadata. You
can update the owner, the team, the labels and the contact email of the certificates. To unset an
existing value use the value "unset".

Table 38. Bulk update command parameters

Parameter Description

--query The HCQL query string. Update will be
performed on results.

--confirm Skip confirm.

--owner The owner to set on certificates matching the
query. (Optional)

--team The team to set on certificates matching the
query. (Optional)

--labels The labels, in the comma separated key:value
form, to set on certificates matching the query.
(Optional)

--contact-email The contact email to set on certificates matching
the query. (Optional)


horizon-cli bulk update --query 'module equals "est" and status is
valid' --owner "myuser" --team "myteam" --labels "mylabel:myvalue"
--contact-email "unset"

Bulk migrate
The bulk migrate command allows certificate migration from one profile to another. The command
takes an HCQL query as parameter and migrate the matching certificates to the provided profile.
The command can also update the certificates metadata. You can update the owner, the team, the
labels and the contact email of the certificates. To unset an existing value use the value "unset".

Table 39. Bulk migrate command parameters

Parameter Description

--query The HCQL query string. Update will be
performed on results.

50

Parameter Description

--confirm Skip confirm.

--profile The target profile for the migration.

--owner The owner to set on certificates matching the
query. (Optional)

--team The team to set on certificates matching the
query. (Optional)

--labels The labels, in the comma separated key:value
form, to set on certificates matching the query.
(Optional)

--contact-email The contact email to set on certificates matching
the query. (Optional)


horizon-cli bulk migrate --query 'module equals "est" and status is
valid' --profile new-est-profile --team myteam --labels mylabel:myvalue

Bulk revoke
The bulk revoke command allows certificate revocation en masse. The command takes an HCQL
query as parameter and revoke the matching certificates.

Table 40. Bulk revoke command parameters

Parameter Description

--query The HCQL query string. Update will be
performed on results.

--confirm Skip confirm.


horizon-cli bulk revoke --query 'team equals "myterminatedteam" and
status is valid' --confirm

51

Chapter 11. Automatic TLS Certificate
Installation
The horizon-cli automate command helps you automate the installation of your TLS certificates. It
is designed to streamline the process of certificate enrollment, renewal, and installation. This
functionality is particularly useful for managing Transport Layer Security (TLS) on web servers,
ensuring secure and encrypted connections. It simplifies complex operations through its suite of
subcommands, each tailored for specific aspects of certificate management.

Subcommands
To begin with Horizon CLI automation, use the --help flag with any subcommand for detailed usage
information:

./horizon-cli automate <subcommand> --help

Table 41. Automation module subcommands

Subcommand Description

enroll This command is versatile, functioning similarly
to the init command on servers without
certificates, while also capable of re-enrolling or
taking control of servers with existing
certificates.

init This command is designed to automatically
configure SSL on any newly installed web
server. When executed, it seamlessly sets up a
secure connection by arranging SSL certificates
and enabling SSL on the default HTTPS port
(usually port 443). The process includes
configuring the necessary SSL settings and
restarting the server with SSL enabled.

control This command is designed to locate certificates
within a web server’s configuration and offers
to bring them under automation control. Taking
a certificate under control involves adding
necessary metadata and incorporating it into the
local memory for routine management and
oversight. This process ensures that the
certificates are systematically monitored and
managed as part of the automated workflow. Be
aware that enrolling a new certificate will
replace any certificate currently bound to an
application running on your machine.

52

Subcommand Description

modify This command allows the user to select one of
the managed certificates and modify its sans.

create-periodic-task Sets up a routine task for automated certificate
renewal. The task frequency can be specified,
with a default period of 6 hours. This helps in
automating the renewal process to ensure
certificates remain valid without manual
intervention.

remove-periodic-task Removes the previously set periodic task for
certificate renewal. This is useful when
automated renewal is no longer needed or needs
to be reconfigured.

routine Performs a routine check on all managed
certificates to assess if any need renewal. This is
a part of proactive certificate management to
avoid service disruptions.

list Lists all managed certificates. This provides an
overview of all certificates under management,
including details like expiration dates, domains
covered, etc.

remove Removes a managed certificate or a group of
certificates. The <id> parameter specifies which
certificates to remove, with the option to remove
all services using a keyword like 'all'.



If you’re looking for a more guided experience while using horizon-cli automate,
the --prompt flag is an excellent tool. It enables interactive prompts that guide you
step-by-step through the command’s options, making it easier to configure and
execute your commands accurately.

./horizon-cli automate <subcommand> --prompt

Supported Services
The horizon-cli automate feature supports a variety of web server and application server services.
This ensures a wide range of compatibility and flexibility for users working with different server
environments. The --target flag is used within the tool to specify the specific service on which to
perform automation tasks, allowing for precise and targeted configuration and management.


In order for horizon-cli to function properly, the targeted service should be started
on the machine.

53

List of the supported services:

• nginx (Linux)

• apache (Linux)

• haproxy (Linux)

• jboss wildfly (Linux)

• lighttpd (Linux)

• microsoft iis (Windows)

• evertrust winhorizon (Windows)

• evertrust adcsconnector (Windows)

• Windows (Windows)

• tomcat (Linux & Windows)

• generic (Linux & Windows)

Example of a standard setup on the default HTTPS port (443) for NGINX:

./horizon-cli automate init --target=nginx --automation-policy=<POLICY_NAME>



To set up SSL on a custom port (e.g., 9000), use the --PORT flag. This option allows
SSL configuration on a specific port of your Nginx server.

./horizon-cli automate init --target=nginx --automation-policy
=<POLICY_NAME> --PORT=9000


For microsoft iis, evertrust winhorizon and evertrust adcsconnector services, the
renewal will remove the old certificates (except the original one for backup
purposes) from the windows store.

Generic Service Automation
The Generic Service within the Horizon Client’s automation module provides a versatile and user-
friendly method for obtaining TLS certificates, eliminating the need to specify a pre-existing service
or certificate file. This feature is especially beneficial in scenarios where certificates are required to
be generated dynamically or for users who seek a more automated certificate management process.

Through the interactive mode:

./horizon-cli automate init --target=generic --prompt

Non-Interactive Mode: For an even more streamlined experience, certificates can be automatically
generated with default parameters in non-interactive mode.

54

./horizon-cli automate init --target=generic --automation-policy=<POLICY_NAME> --cert
=my_cert.pem --key=my_key.key --chain-file=my_chain.pem --no-interactive

Default Storage Location: Newly generated certificates are automatically stored in a default
location, which is /opt/horizon/var/generic on Unix systems, and
C:\ProgramData\EverTrust\Horizon\Var\Generic on Windows systems.

Configuration Folder Override: Users have the flexibility to override the default storage location
using the --config-folder option. This allows for customization of the storage path as per individual
requirements or organizational standards.

./horizon-cli automate init --config-folder=/path/to/folder --target=generic
--automation-policy=<POLICY_NAME> --pfx=my_cert.p12 --pfx-pwd=pass123 --chain-file
=my_chain.pem --no-interactive

The Generic Service’s emphasis on flexibility and user-friendliness makes it a valuable tool for a
wide range of users, from those requiring on-the-fly certificate generation to those preferring a
hands-off, automated approach.

Windows-Specific Features: On Windows systems, the Horizon CLI offers additional flags to
specify the certificate store location:

--win-user-store: Save the certificate in the user store. This option is beneficial when certificates
need to be accessible on a per-user basis.

--win-computer-store: Save the certificate in the computer store. Ideal for certificates that must be
available system-wide.

These options provide flexibility in managing certificate storage, catering to different security and
accessibility requirements on Windows systems.

Windows Service Automation
The windows target handles application that use a certificate in the Windows store without specific
configuration files.

It supports:

• Remote Desktop certificates (rdp)

• Domain Controller certificates (domaincontroller)

To enroll a RDP certificate:

Through the interactive mode:

./horizon-cli automate init --target=windows --prompt

55

Non-Interactive Mode: Specific windows usages can be targeted using the --win-usages option

./horizon-cli automate init --target=windows --win-usages rdp,domaincontroller

Automation policies
Automation policies are central to the operation of the automation module in the Horizon system.
These policies dictate how certificates should be enrolled and renewed, providing a customizable
framework to suit various client requirements.

Before using automation policies, they must be pre-configured in the Horizon web app. Each policy
is given a unique name for easy identification.

Profile Selection: Policies can be based on EST, SCEP, or ACME profiles, depending on the specific
requirements of the enrollment and renewal process.

 EverTrust recommends using EST for most use cases of server automation.

Execution Policy: Includes settings that define how and when the automation should be executed.

Compliance Settings: Specify which CAs are authorized for use within the policy.

Authorized Hash Algorithms: Determine which hash algorithms are acceptable.

Trust Chains: Configure the trust chains that are essential for establishing the trustworthiness of
the certificates.

Parameter Specification: When performing automation operations, the relevant automation
policy is specified using the --automation-policy parameter.

Existing WebServer certificates
The Horizon CLI’s automation module is equipped with a discovery feature that scans and
identifies certificates on your machine. It does this by parsing configuration files of your web
server or TLS service.

By default, it searches for certificates across all supported services.

./horizon-cli automate enroll --automation-policy=<POLICY_NAME>



Limit the search to specific services. Separate multiple services with commas.

./horizon-cli automate enroll --automation-policy=<POLICY_NAME>
--target=apache,nginx

If you use a different config folder than the default one you can specify your

56

custom folder using --config-folder

./horizon-cli automate enroll --automation-policy=<POLICY_NAME>
--target=apache,nginx --config-folder=/path/to/folder

Perform only the discovery phase and print the results without enrolling
certificates using --analyze-only:

./horizon-cli automate enroll --automation-policy=<POLICY_NAME>
--target=apache,nginx --analyze-only

The --discovery parameter allows you to integrate certificate enrollment with a discovery
campaign pre configured in the Horizon web app before running the CLI command. It includes
additional information on the certificate’s usage and location on the host machine.

./horizon-cli automate enroll --automation-policy=<POLICY_NAME> --discovery-campaign
=<DISCOVERY_CAMPAIGN_NAME>

Additional enrollment parameters

Challenge Passwords for Enrollment

The --challenge parameter is used to provide challenge passwords for EST or SCEP during the
enrollment process. Challenge passwords are crucial for the authentication phase in these
protocols, ensuring secure communication and identity verification.



When enrolling certificates using EST or SCEP protocols, the --challenge
parameter allows you to specify one or more challenge passwords required by the
enrollment server. Multiple challenge passwords can be provided, separated by
commas, to support various scenarios or multiple servers enrollment.

You can also use the --request-challenge parameter to create a challenge request on Horizon. When
the challenge request will be validated a periodic task will get the challenge and finish the
enrollment. The periodic task can be configured with the --challenge-routine-period parameter.

 You must be authenticated to use the --request-challenge parameter.

Post-Enrollment Script Execution

The --script parameter allows the execution of a custom script upon the successful completion of a
certificate enrollment process. It supports both Bash scripts in Linux environments and PowerShell
scripts in Windows environments.

57

./horizon-cli automate enroll --automation-policy=<POLICY_NAME> --script
=/home/user/post_enroll.sh

The script will receive arguments passed by Horizon Client in the following order:

1. Issued certificate serial number

2. Issued certificate fingerprint (SHA-1 hash of the certificate in DER format - windows store
thumbprint)

3. Issued certificate Subject DN

4. Issued certificate Issuer DN

5. Storage information

Below is an example of a very simple bash script:

#!/bin/sh

echo $1
echo $2
echo $3
echo $4
echo $5

Below is an example of a very simple PowerShell script:

param($serial, $fingerprint, $subject, $issuer, $storage)

Write-Output $serial
Write-Output $fingerprint
Write-Output $subject
Write-Output $issuer
Write-Output $storage

Storage information

The storage information is a JSON array containing information about the storage, with one object
per storage.

[
 {
 "type": "jks",
 "path": "/path/to/jks",
 "alias": "jks alias",
 "password": "jks password",
 "caChainPath": "/path/to/chain"
 }

58

]

Storage are often linked to a target. Here are the available storages for each target:

• apache: Certificate, chain and key in separate files or Chain and key in separate files

• nginx: Chain and key in separate files

• tomcat: Certificate, chain and key in separate files or JKS or PKCS#12

• lighttpd: Chain and key in separate files

• wildfly: JKS or PKCS#12

• iis: Windows store entry

• winhorizon: Windows store entry or PKCS#12

• adcsconnector: Windows store entry

• windows: Windows store entry

• generic: Certificate, chain and key in separate files or Windows store entry or JKS or PKCS#12

• haproxy: Chain and key in separate files or Chain and key in a single file

Storage Types

Chain and key in a single file

Description:

• path contains the path to the certificate chain (including leaf certificate, in leaf to root order)
followed by the certificate private key in PEM format

Example:

[
 {
 "type": "bundle",
 "path": "/path/to/cert+chain+key"
 }
]

Chain and key in separate files

Description:

• chainPath contains the path to the certificate chain (including leaf certificate, in leaf to root
order) in PEM format

• keyPath contains the path to the certificate key in PEM format

Example:

59

[
 {
 "type": "chainKey",
 "chainPath": "/path/to/cert+chain",
 "keyPath": "/path/to/key"
 }
]

Certificate, chain and key in separate files

Description:

• certPath contains the path to the certificate (without chain) in PEM format

• keyPath contains the path to the certificate key in PEM format

• caChainPath contains the path to the certificate chain (excluding leaf certificate, in leaf to root
order) in PEM format

• certFormat contains the format of the certificate file (PEM or DER)

Example:

[
 {
 "type": "certChainKey",
 "certPath": "/path/to/cert",
 "keyPath": "/path/to/key",
 "caChainPath": "/path/to/chain",
 "certFormat": "PEM or DER"
 }
]

Windows store entry

Description:

• thumbprint contains the thumbprint of the certificate in the windows store

• machineStore if true, means the certificate is stored in the machine store, else in the user store

Example:

[
 {
 "type": "windowsStore",
 "thumbprint": "thumbprint of the certificate",
 "machineStore": false
 }
]

60

JKS

Description:

• path is the path to the JKS file

• alias contains the alias in which the certificate is stored

• password contains the JKS password

• caChainPath(optional) contains the path to the chain file (excluding leaf certificate, in root to leaf
order) in PEM format

Example:

[
 {
 "type": "jks",
 "path": "/path/to/jks",
 "alias": "jks alias",
 "password": "jks password",
 "caChainPath": "/path/to/chain"
 }
]

PKCS#12

Description:

• path is the path to the pkcs12 file

• password contains the pkcs12 password

• caChainPath(optional) contains the path to the chain file (excluding leaf certificate, in root to leaf
order) in PEM format

Example:

[
 {
 "type": "pkcs12",
 "path": "/path/to/pkcs12",
 "password": "pkcs12 password",
 "caChainPath": "/path/to/chain"
 }
]

Metadata parameters

Add metadata to certificates during the enrollment process: These certificate information
parameters enhance the management and traceability of TLS certificates. By using these optional

61

fields, organizations can maintain better oversight and control over their certificate infrastructure.

Table 42. Metadata parameters

Parameter Description

--owner Owner of the certificate

--contact-email Contact email of the certificate owner

--team Team owning the certificate

--labels Labels to attach to the certificate, in the form
key:value

ACME Account Specification for Enrollment

The --acme-account parameter is mandatory when enrolling certificates using the ACME protocol. It
specifies the ACME account to be used for the enrollment process.

./horizon-cli automate enroll --acme-account=myAcmeAccount

Installation
After a successful enrollment or renewal, the certificate will be installed on your machine. The
impacted services will be restarted automatically after each certificate enrollment or renewal.



In certain scenarios, you might not want the Horizon CLI to automatically install
the new certificate or restart the related services.

If you wish for the client to not install your new certificate, that is, not replace the
old certificate and not restart the impacted services, you can use the --no-install
option. Each new file (cert, key, CA chain, keystore…) will then be placed in the
same folder as it’s predecessor, with the .new extension.

Renewal
Each time a certificate is discovered and enrolled by the automation module of the Horizon Client,
its details are stored in the internal database for future reference. Each time the automate routine
command is run, the client will check if any of the locally known certificates need to be renewed.
Reasons for renewal can be:

• The certificate is about to expire

• The certificate has been revoked

• Preferences such as key type or enrollment CA were changed in the profile or automation policy

If a certificate needs to be renewed, the client will perform the renewal according to the
automation policy, and its corresponding profile.

62



We recommend that you run the automate routine command periodically as a cron
job or scheduled task. You can use the command horizon-cli automate create-
periodic-task <period> or the flag --auto-renew on the automate enroll command
to help you in the process, or create it manually.

This mechanism allows for more resilient web servers, as the certificates will be renewed
automatically, before any interruption of service can happen because of an expired or revoked
certificate. It also helps your organisation migrate your TLS certificates to a new CA quickly, by
simply changing the preferred enrollment CA in the automation policy and waiting a few hours for
all your instances of the Horizon Client to execute their routine tasks.



Using --auto-renew flag will check and check the certificate every 6 hours:

./horizon-cli automate enroll --target=nginx --automation-policy
=<POLICY_NAME> --auto-renew

Interactivity
Two options are available to control the interactivity of the automate commands:

• The --no-interactive flag will prevent any prompt from being displayed, and will use the
default values or those provided in the command line arguments. It will:

◦ select all discovered certificates for enrollment. In order to select specific certificates
without interaction, the --select-certs flag can be used to specify a glob matching the
website identifier.

Example: Running the automate enroll --analyze-only --automation-policy <automation policy
name> returns the following result:

CN Locations Bindings

New Certificate Not yet prompted generic-893c8435-08c5-4d2d-
b9f6-88b952b34ca4

New Certificate /etc/pki/nginx/server.crt nginx-*:443

To select and enroll only the nginx cert, the following command can be used automate enroll
--automation-policy <automation policy name> --no-interactive --select-certs nginx*

• if a challenge is required, use the provided --challenge argument. If no challenge is provided, or
the given challenge has already been used, the enrollment will fail.

• not add any additional SANs

◦ The --prompt flag will force the client to prompt the user for any missing information. If
specified, any other command line arguments are optional. It will:

• prompt the user to select which services to search for on the machine (equivalent to the
--target option)

63

• prompt the user for the automation policy (equivalent to the --automation-policy option)

• prompt the user for the configuration folder (equivalent to the --config-folder option)

Certificate commands

Enroll

The enroll command can either setup a certificate and empty https configuration from scratch, or
take control of certificates, reenrolling them to be compliant when necessary.

Parameters

Table 43. Enroll general parameters

Parameter Mandator
y

Type Description

--automation-policy ☑ string The automation policy to link the
certificate to.

--challenge string array (comma
separated)

See challenge section.

--script string (path to file) See script section.

--auto-renew boolean Configures a status check every 6
hours.

--request-challenge boolean See challenge section.

--challenge-routine
-period

duration Period of execution of the periodic
task.

--user string Name of the user to impersonate
while running the request challenge
periodically.

--discovery-campaign string Also add discovery info on the
enrolled certificate on the campaign
passed.

--force-enroll boolean Reenroll all selected certificates
regardless of their compliance.

--analyze-only boolean Instead of executing the
enrollments, only displays a
summary of possible actions.

--no-interactive boolean Disables all interactive inputs. All
parameters must then be given
using cli flags.

64

Parameter Mandator
y

Type Description

--prompt boolean Enable all interactive inputs. All
parameters will now be asked for,
except ones given using cli flags.

Table 44. Enroll webServer configuration

Parameter Mandator
y

Type Description

--target string array (comma
separated)

List of services to target. If not
given, all available services are
targeted.

--no-install boolean Disables installation.

--config-folder string (path to folder) Explicitly point your webserver
configuration folder.

--port integer When initializing an empty https
configuration on a blank server,
choose on which port to listen for
https (defaults to the standard https
port for the webserver 443 or 8443)

--keystore-password string Password of the webserver’s
keystore if it cannot be deduced
from configuration

Table 45. Enroll certificate configuration

Parameter Mandator
y

Type Description

--c string DN element Country, a two-letter
country code

--o string DN element Organization, the name
of a company or organization

--ou string array (comma
separated)

List of Organizational Unit, internal
organization department/division
names

--dnsnames string array (comma
separated)

List of DNS SANs. If not given, the
machine hostname is used.

--ip string array (comma
separated)

List of IP SANs. If not given, no IPs
are set.

--labels string array (comma
separated, in
label:value form)

Horizon labels to add to the
certificate on enrollment.

65

Parameter Mandator
y

Type Description

--team string Horizon team to add to the
certificate on enrollment

--owner string Horizon owner to add to the
certificate on enrollment

--contact-email string Horizon contact email to add to the
certificate on enrollment

Table 46. Enroll ACME options

Parameter Mandator
y

Type Description

--acme-account ☑ (if using
ACME)

string The identifier (email) of the ACME
account to use

--http-01-port int The http 01 port on which to listen

--dns-01-provider string DNS provider script to use for ACME
enrollments. ACME.sh based on
Linux, Posh-ACME based on
Windows

--eab-kid string Kid for External Account Binding

--eab-key string Key for External Account Binding

Table 47. Enroll ACME External options

Parameter Mandator
y

Type Description

--standalone boolean Use built in http server

--local boolean Use an existing http server

--document-root string Path of the document root where to
put the well-known folder for the
challenge

Table 48. Enroll generic options

Parameter Mandator
y

Type Description

--destination-folder string (path to folder) Folder to write the new certificates
to. Default to
/opt/horizon/var/generic on linux
and
C:\ProgramData\EverTrust\Horizon\G
eneric on windows.

66

Parameter Mandator
y

Type Description

--pfx string Name of the PKCS#12 file to write
the enrolled certificate to.

--pfx-pwd string Password of the PKCS#12 file to
write the enrolled certificate to.

--jks string Name of the JKS file to write the
enrolled certificate to.

--jks-pwd string Password of the JKS file to write the
enrolled certificate to.

--jks-alias string Alias of the JKS file to write the
enrolled certificate to.

--cert string Name of the file to write the
enrolled certificate to in PEM
format.

--key string Name of the file to write the
enrolled key to.

--der boolean Save the certificate and key in DER
format.

--chain-file string Name of the file to write the
enrolled certificate chain to.

--win-user-store boolean [Windows certificate store] Save the
certificate in the windows user
store.

--win-computer-store boolean [Windows certificate store] Save the
certificate in the windows computer
store (LocalMachine).

--win-store-use-tpm boolean [Windows certificate store] Use the
Microsoft Platform Crypto Provider
for certificate store storage.

--win-store-use-legacy boolean [Windows certificate store] Use the
Microsoft Platform Crypto Provider
for certificate store storage.

--win-store-set
-exportable

boolean [Windows certificate store] Set the
private key as exportable from the
certificate store.


Storage output for generic must choose between pfx, certificate, jks or windows
store output.

Table 49. Enroll windows options

67

Parameter Mandator
y

Type Description

--win-usages string array (comma
separated)

Windows usages for this certificate.
See windows target.

Examples

Use the interactive mode

horizon-cli automate enroll --prompt

Enroll a new certificate in the default generic folder

horizon-cli automate enroll --automation-policy=<automation policy> --target=generic
--cert cert.pem --key key.pem --chain-file chain.pem

Add https or control a nginx service

horizon-cli automate enroll --automation-policy=<automation policy> --target=nginx

Add https to a nginx service without interaction and with custom SAN values

horizon-cli automate enroll --automation-policy=<automation policy> --target=nginx
--no-interactive --dnsnames="nginx.test,*.test" --ip "1.1.1.1"

Init

The init command can setup a certificate and empty https configuration from scratch.


The init command can only be used on webservers where no certificate is
configured in order to avoid conflicts. See the other commands to match your use
case.

Parameters

Table 50. Init general parameters

Parameter Mandator
y

Type Description

--automation-policy ☑ string The automation policy to link the
certificate to.

68

Parameter Mandator
y

Type Description

--challenge string array (comma
separated)

See challenge section.

--script string (path to file) See script section.

--auto-renew boolean Configures a status check every 6
hours.

--request-challenge boolean See challenge section.

--challenge-routine
-period

duration Period of execution of the periodic
task.

--user string Name of the user to impersonate
while running the request challenge
periodically.

--discovery-campaign string Also add discovery info on the
enrolled certificate on the campaign
passed.

--analyze-only boolean Instead of executing the
enrollments, only displays a
summary of possible actions.

--no-interactive boolean Disables all interactive inputs. All
parameters must then be given
using cli flags.

--prompt boolean Enable all interactive inputs. All
parameters will now be asked for,
except ones given using cli flags.

Table 51. Init webServer configuration

Parameter Mandator
y

Type Description

--target string array (comma
separated)

List of services to target. If not
given, all available services are
targeted.

--no-install boolean Disables installation.

--config-folder string (path to folder) Explicitly point your webserver
configuration folder.

--port integer When initializing an empty https
configuration on a blank server,
choose on which port to listen for
https (defaults to the standard https
port for the webserver 443 or 8443)

69

Parameter Mandator
y

Type Description

--keystore-password string Password of the webserver’s
keystore if it cannot be deduced
from configuration

Table 52. Init certificate configuration

Parameter Mandator
y

Type Description

--c string DN element Country, a two-letter
country code

--o string DN element Organization, the name
of a company or organization

--ou string array (comma
separated)

List of Organizational Unit, internal
organization department/division
names

--dnsnames string array (comma
separated)

List of DNS SANs. If not given, the
machine hostname is used.

--ip string array (comma
separated)

List of IP SANs. If not given, no IPs
are set.

--labels string array (comma
separated, in
label:value form)

Horizon labels to add to the
certificate on enrollment.

--team string Horizon team to add to the
certificate on enrollment

--owner string Horizon owner to add to the
certificate on enrollment

--contact-email string Horizon contact email to add to the
certificate on enrollment

Table 53. Init ACME options

Parameter Mandator
y

Type Description

--acme-account ☑ (if using
ACME)

string The identifier (email) of the ACME
account to use

--http-01-port int The http 01 port on which to listen

--dns-01-provider string DNS provider script to use for ACME
enrollments. ACME.sh based on
Linux, Posh-ACME based on
Windows

--eab-kid string Kid for External Account Binding

70

Parameter Mandator
y

Type Description

--eab-key string Key for External Account Binding

Table 54. Init ACME External options

Parameter Mandator
y

Type Description

--standalone boolean Use built in http server

--local boolean Use an existing http server

--document-root string Path of the document root where to
put the well-known folder for the
challenge

Table 55. Init generic options

Parameter Mandator
y

Type Description

--destination-folder string (path to folder) Folder to write the new certificates
to. Default to
/opt/horizon/var/generic on linux
and
C:\ProgramData\EverTrust\Horizon\G
eneric on windows.

--pfx string Name of the PKCS#12 file to write
the enrolled certificate to.

--pfx-pwd string Password of the PKCS#12 file to
write the enrolled certificate to.

--jks string Name of the JKS file to write the
enrolled certificate to.

--jks-pwd string Password of the JKS file to write the
enrolled certificate to.

--jks-alias string Alias of the JKS file to write the
enrolled certificate to.

--cert string Name of the file to write the
enrolled certificate to in PEM
format.

--key string Name of the file to write the
enrolled key to.

--der boolean Save the certificate and key in DER
format.

--chain-file string Name of the file to write the
enrolled certificate chain to.

71

Parameter Mandator
y

Type Description

--win-user-store boolean [Windows certificate store] Save the
certificate in the windows user
store.

--win-computer-store boolean [Windows certificate store] Save the
certificate in the windows computer
store (LocalMachine).

--win-store-use-tpm boolean [Windows certificate store] Use the
Microsoft Platform Crypto Provider
for certificate store storage.

--win-store-use-legacy boolean [Windows certificate store] Use the
Microsoft Platform Crypto Provider
for certificate store storage.

--win-store-set
-exportable

boolean [Windows certificate store] Set the
private key as exportable from the
certificate store.


Storage output for generic must choose between pfx, certificate, jks or windows
store output.

Table 56. Init windows options

Parameter Mandator
y

Type Description

--win-usages string array (comma
separated)

Windows usages for this certificate.
See windows target.

Examples

Use the interactive mode

horizon-cli automate init --prompt

Enroll a new certificate in the default generic folder

horizon-cli automate init --automation-policy=<automation policy> --target=generic
--cert cert.pem --key key.pem --chain-file chain.pem

Add https to a nginx service

horizon-cli automate init --automation-policy=<automation policy> --target=nginx

72

Add https to a nginx service without interaction and with custom SAN values

horizon-cli automate init --automation-policy=<automation policy> --target=nginx --no
-interactive --dnsnames="nginx.test,*.test" --ip "1.1.1.1"

Control

The control command can take control of an existing certificate on your machine.


The control command can only be used on known and compliant with Horizon
certificates. If the certificate needs to be enrolled, see the other commands to
match your use case.

Parameters

Table 57. Control general parameters

Parameter Mandator
y

Type Description

--automation-policy ☑ string The automation policy to link the
certificate to.

--challenge string array (comma
separated)

See challenge section.

--script string (path to file) See script section.

--auto-renew boolean Configures a status check every 6
hours.

--discovery-campaign string Also add discovery info on the
enrolled certificate on the campaign
passed.

--analyze-only boolean Instead of executing the control,
only displays a summary of possible
actions.

--no-interactive boolean Disables all interactive inputs. All
parameters must then be given
using cli flags.

--prompt boolean Enable all interactive inputs. All
parameters will now be asked for,
except ones given using cli flags.

Table 58. Control webServer configuration

73

Parameter Mandator
y

Type Description

--target string array (comma
separated)

List of services to target. If not
given, all available services are
targeted.

--no-install boolean Disables installation.

--config-folder string (path to folder) Explicitly point your webserver
configuration folder.

--keystore-password string Password of the webserver’s
keystore if it cannot be deduced
from configuration

Table 59. Control certificate configuration

Parameter Mandator
y

Type Description

--labels string array (comma
separated, in
label:value form)

Horizon labels to add to the
certificate on enrollment.

--team string Horizon team to add to the
certificate on enrollment

--owner string Horizon owner to add to the
certificate on enrollment

--contact-email string Horizon contact email to add to the
certificate on enrollment

Table 60. Control ACME options

Parameter Mandator
y

Type Description

--acme-account ☑ (if using
ACME)

string The identifier (email) of the ACME
account to use when renewing

--http-01-port int The http 01 port on which to listen

--dns-01-provider string DNS provider script to use for ACME
enrollments. ACME.sh based on
Linux, Posh-ACME based on
Windows


For generic control, it is as of now disabled outside the default folder
(/opt/horizon/var/genric or C:\ProgramData\EverTrust\Horizon\Generic) to ensure
no service interruption. Use post enrollment scripts to copy the certificate.

Table 61. Control generic options

74

Parameter Mandator
y

Type Description

--pfx string Name of the PKCS#12 file to control.

--pfx-pwd string Password of the PKCS#12 file to
control.

--jks string Name of the JKS file to control.

--jks-pwd string Password of the JKS file to control.

--jks-alias string Alias of the JKS file to control.

--cert string Name of the certificate file to
control.

--key string Name of the key file to control.

--der boolean If true, the certificate and key to
control are in DER format.

--chain-file string Name of the file to write the
enrolled certificate chain to.

--win-user-store boolean Control the certificate in the
windows user store.

--win-computer-store boolean Control the certificate in the
windows machine store.

--win-thumbprint boolean Thumbprint of the certificate to
control. To use with --win-computer
-store or --win-user-store

 Input for generic must choose between pfx, certificate, jks or windows store.

Table 62. Control windows options

Parameter Mandator
y

Type Description

--win-usages string array (comma
separated)

Windows usages for this certificate.
See windows target.

Examples

Use the interactive mode

horizon-cli automate control --prompt

Control a certificate in the default generic folder

horizon-cli automate control --automation-policy=<automation policy> --target=generic

75

--cert cert.pem --key key.pem --chain-file chain.pem

Control a certificate on an already configured nginx

horizon-cli automate control --automation-policy=<automation policy> --target=nginx

Modify

The modify command allows to select a managed certificate and reenroll it, modifying its sans.

 Automation policy cannot be modified

Parameters

Table 63. Modify general parameters

Parameter Mandator
y

Type Description

--challenge string array (comma
separated)

See challenge section.

--script string (path to file) See script section.

--request-challenge boolean See challenge section.

--challenge-routine
-period

duration Period of execution of the periodic
task.

--user string Name of the user to impersonate
while running the request challenge
periodically.

--discovery-campaign string Also add discovery info on the
enrolled certificate on the campaign
passed.

--prompt boolean Enable all interactive inputs. All
parameters will now be asked for,
except ones given using cli flags.

Table 64. Modify webServer configuration

Parameter Mandator
y

Type Description

--target string array (comma
separated)

List of services to target. If not
given, all available services are
targeted.

--no-reload boolean Do not reload webservers after
certificate enrollment.

76

Table 65. Modify certificate configuration

Parameter Mandator
y

Type Description

--c string DN element Country, a two-letter
country code

--o string DN element Organization, the name
of a company or organization

--ou string array (comma
separated)

List of Organizational Unit, internal
organization department/division
names

--dnsnames string array (comma
separated)

List of DNS SANs. If not given, the
machine hostname is used.

--ip string array (comma
separated)

List of IP SANs. If not given, no IPs
are set.

--labels string array (comma
separated, in
label:value form)

Horizon labels to add to the
certificate on enrollment.

--team string Horizon team to add to the
certificate on enrollment

--owner string Horizon owner to add to the
certificate on enrollment

--contact-email string Horizon contact email to add to the
certificate on enrollment

Table 66. Modify ACME options

Parameter Mandator
y

Type Description

--acme-account ☑ (if using
ACME)

string The identifier (email) of the ACME
account to use.

Examples

Use the interactive mode

horizon-cli automate modify --prompt

Set sans for the generic certificates

horizon-cli automate modify --target=generic --dnsnames="nginx.test,*.test" --ip
"1.1.1.1"

77

Backup
Each time a file is replaced by the Horizon Client, the old file is backed up. The backup files are
stored in the cert/backup/<HASH(BACKUPED FILE PATH)> directory relative to the Horizon Client data
folder (/opt/horizon on unix and C:/ProgramData/EverTrust/Horizon on Windows), as filename_n.ext
where n is the number of the backup. Thus, the filename_0.ext is the original version, before any
intervention of the Horizon Client.

Internal Database operations
The internal database is used to store the details of the certificates that are discovered and enrolled
by the automation module. You can list them using the automate list command, and delete them
using the automate delete command. Certificates are indexed by their bindings, which are the
combination of all the services along with the hostnames and ports that use the certificate. For
example, if you have a certificate that is used by Apache for all hosts on the port 443, it’s "id" in the
local database will be apache-*:443.



You can choose the output format of the automate list command. By default, it
outputs a string, but you can use the --json option to output a JSON object.
example:

horizon-cli automate list --json | jq

The automate remove <id1> … <idn> command erases certificates from the local database. This
command will not remove the certificate files from your machine, only remove it from the
"managed certificates" local database. This way, the client will not check its status at each routine
execution anymore.


You can use the automate remove all command to remove all certificates from the
local database.

The --restore option of the automate remove command can be used to restore a certificate from a
backup file. The backup file to be restored will always be the older one, in most cases the
filename_0.ext, that is, the original file before any tampering by the Horizon Client. For certificates
stored in the Windows store, the store thumbprints will be stored in a file corresponding to the
server type, like iisbackups.

The --revoke option of the automate remove command can be used to revoke the certificate after
being removed from the "managed certificate" local database. You can add the option --reason to
specify the revocation reason of the certificate.

System commands
horizon-cli uses system commands to manage webservers. In order to use them with sudo, the
SUDO_COMMANDS configuration is available and the commands that might be executed on each flow
are available below (linux only):

78

https://docs.evertrust.fr/horizon-cli/1.13/config.html#config_content
https://docs.evertrust.fr/horizon-cli/1.13/config.html#config_content

apache

• systemctl

• apachectl

• a2enmod

• a2dismod

• which

• whereis

• ln

• bash for script execution

nginx

• systemctl

• nginx

• ln

• bash for script execution

tomcat

• systemctl

• bash for script execution

lighttpd

• systemctl

• ln

• bash for script execution

wildfly

• systemctl

• bash for script execution

generic

• bash for script execution

haproxy

• systemctl

79

• haproxy

• bash for script execution

Routine
Table 67. Routine arguments

Argument Mandatory Type Description

automation-policies string array (comma
separated)

List of automation
policies to check for
certificate renewal. If
not given, all policies
are checked.

Its usage is described in the renewal section.

Management commands

Periodic task

To run the routine at specified intervals, the periodic task command can create scheduled
execution on windows (scheduled task) and linux (cron).

Two commands are available, to remove and add the task.

Parameters

Table 68. Create periodic task arguments

Argument Mandatory Type Description

Period duration Run the routine
command every period
from midnight UTC.
Must be superior to 1h
and inferior to 24h.
Defaults to 6h.

Table 69. Create periodic task parameters

Parameter Mandatory Type Description

--user string Linux only: The user to
impersonate while
running the routine.
Defaults to root user.

80

Examples

Create a periodic task to run routine every 7h

horizon-cli automate create-periodic-task 7h

Remove the periodic task

horizon-cli automate remove-periodic-task

List

The list command lists the currently managed certificates and various information about them,
notably the associated automation policy.

Parameters

Table 70. List parameters

Parameter Mandatory Type Description

--json string Output the current
state as JSON instead of
human readable
format.

Examples

Show the currently managed certificates

horizon-cli automate list

Show the currently managed certificates as JSON

horizon-cli automate list --json

Remove

The remove command erases a certificate binding from the horizon-cli managed certificates.

Parameters

Table 71. Remove arguments

81

Argument Mandatory Type Description

id string Id of the services to
remove. See automate
list to get the id. Use all
to erase every managed
certificate.

Table 72. Remove parameters

Parameter Mandatory Type Description

--restore boolean Enables restoration of
the oldest backup for
the removed certificate.

--revoke boolean Enables the revocation
of the removed
certificate

--reason string Reason for revocation
(unspecified,
keycompromise,
cacompromise,
affiliationchanged,
superseded,
cessationofoperation)

--acme-account ☑ (if revoking ACME
certificate)

string The identifier (email) of
the ACME account to
use

Examples

Remove all currently managed certificates

horizon-cli automate remove all

Remove the certificate linked to nginx https and restore the original one

horizon-cli automate remove nginx-*:443 --restore

Remove and revoke the certificate linked to nginx https one

horizon-cli automate remove nginx-*:443 --revoke --reason affiliationchanged

82

Examples

Enroll certificates used by nginx and apache

horizon-cli automate enroll \
 --target=nginx,apache \
 --automation-policy=<POLICY_NAME>

Enroll certificates using the generic target

horizon-cli automate enroll \
 --target=generic \
 --automation-policy=<POLICY_NAME>

Use the interactive mode

horizon-cli automate enroll --prompt

Check if the previously enrolled certificates need to be
renewed

horizon-cli automate routine

Get the DN of all the certificates enrolled by the automation
module

horizon-cli automate list --json | jq -r '.[] | .certificate | .subject'

Remove the certificate used by nginx on the port 443 from
the automatically renewed certificates

horizon-cli automate remove nginx-*:443

83

Remove the certificate used by tomcat on the port 8443 from
the automatically renewed certificates and restore the
original certificate

horizon-cli automate remove --restore tomcat-*:8443

84

Chapter 12. Release notes

12.1. Horizon Cli 1.13.0 release notes
Here are the release notes for EverTrust Horizon Client v[object Object], released on 2025-10-23. For
the installation and upgrade procedure, please refer to the Installation and Upgrade guide.

New Features

• [HCL-521] - Netimport: Now supports HashiCorp Vault

Enhancements
[None]

Bug Fixes
[None]

Reworked features
[None]

Known defects
[None]

85

	Horizon Client
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. General Configuration and Usage
	Chapter 3. Basic commands
	Chapter 4. Discovery Operations
	Chapter 5. Import operations
	Chapter 6. EST Certificate Lifecycle Operations
	Chapter 7. SCEP Certificate Lifecycle Operations
	Chapter 8. WebRA Certificate Lifecycle Operations
	Chapter 9. Updating a certificate
	Chapter 10. Bulk Operations
	Chapter 11. Automatic TLS Certificate Installation
	Chapter 12. Release notes
	12.1. Horizon Cli 1.13.0 release notes

